Theoretical and Computational Fluid Dynamics

, Volume 3, Issue 2, pp 79–93 | Cite as

Complex transition to chaotic flow in a periodic array of cylinders

  • A. Fortin
  • M. Fortin
  • J. J. Gervais
Article

Abstract

This paper presents a numerical study of the transition to chaos of the flow of a Newtonian fluid in a periodic array of cylinders between two parallel walls. Using tools from dynamical system theory, we identify and characterize the different solutions to the Navier-Stokes equations at different values of the Reynolds number. We show that a very complex transition to chaos occurs for this problem where we first observe two incommensurate frequencies and then a frequency locking followed by a few period doublings following Feigenbaum's route to turbulence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.D. Landau, M. Lifshitz, Fluid Mechanics, Pergamon Press, London (1959).Google Scholar
  2. [2]
    D. Ruelle, F. Takens, Comm. Math. Phys., 20, 167 (1971).Google Scholar
  3. [3]
    J.P. Golub, H.L. Swinney, Phys. Rev. Lett., 35, 927 (1975).Google Scholar
  4. [4]
    A. Libchaber, J Maurer, J. Phys. Coll. C3, 41, 5 (1980).Google Scholar
  5. [5]
    M.J. Feigenbaum, J. Statist. Phys., 19, 25 (1978).Google Scholar
  6. [6]
    M.J. Feigenbaum, Phys. Lett. A, 74, 375 (1979).Google Scholar
  7. [7]
    J.P. Golub, S.V. Benson, J. Steinman, Ann. New York Acad. Sci., 357, 22 (1979).Google Scholar
  8. [8]
    A. Fortin, M. Fortin, J.J. Gervais, J. Comput. Phys, 70, 295 (1986).Google Scholar
  9. [9]
    J.W. Goodrich, Proc. IMACS 1st Internat. Conf. Comput. Phys., Boulder, Colorado, p. 178 (1990).Google Scholar
  10. [10]
    T.H. Pulliam, AIAA-89-0123, Reno, Nevada.Google Scholar
  11. [11]
    G.E. Karniadakis, B.B. Mikic, A.T. Patera, J. Fluid Mech., 192, 365 (1988).Google Scholar
  12. [12]
    A. Fortin, Comm. Appl. Numer. Methods, 4, 835 (1988).Google Scholar
  13. [13]
    M. Buffat, Ph.D. thesis, Université Lyon I (1991).Google Scholar
  14. [14]
    A. Arneodo, P. Coullet, C. Tresser, A. Libchaber, J. Maurer, D. D'Humières, Phys. D, 6, 385 (1983).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • A. Fortin
    • 1
  • M. Fortin
    • 2
  • J. J. Gervais
    • 2
  1. 1.Départment de Mathématiques AppliquéesMontréalCanada
  2. 2.Département de Mathématiques et de StatistiquesUniversité LavalQuébecCanada

Personalised recommendations