Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 3, Issue 2, pp 79–93 | Cite as

Complex transition to chaotic flow in a periodic array of cylinders

  • A. Fortin
  • M. Fortin
  • J. J. Gervais
Article

Abstract

This paper presents a numerical study of the transition to chaos of the flow of a Newtonian fluid in a periodic array of cylinders between two parallel walls. Using tools from dynamical system theory, we identify and characterize the different solutions to the Navier-Stokes equations at different values of the Reynolds number. We show that a very complex transition to chaos occurs for this problem where we first observe two incommensurate frequencies and then a frequency locking followed by a few period doublings following Feigenbaum's route to turbulence.

Keywords

Dynamical System Reynolds Number System Theory Mathematical Method Newtonian Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.D. Landau, M. Lifshitz, Fluid Mechanics, Pergamon Press, London (1959).Google Scholar
  2. [2]
    D. Ruelle, F. Takens, Comm. Math. Phys., 20, 167 (1971).Google Scholar
  3. [3]
    J.P. Golub, H.L. Swinney, Phys. Rev. Lett., 35, 927 (1975).Google Scholar
  4. [4]
    A. Libchaber, J Maurer, J. Phys. Coll. C3, 41, 5 (1980).Google Scholar
  5. [5]
    M.J. Feigenbaum, J. Statist. Phys., 19, 25 (1978).Google Scholar
  6. [6]
    M.J. Feigenbaum, Phys. Lett. A, 74, 375 (1979).Google Scholar
  7. [7]
    J.P. Golub, S.V. Benson, J. Steinman, Ann. New York Acad. Sci., 357, 22 (1979).Google Scholar
  8. [8]
    A. Fortin, M. Fortin, J.J. Gervais, J. Comput. Phys, 70, 295 (1986).Google Scholar
  9. [9]
    J.W. Goodrich, Proc. IMACS 1st Internat. Conf. Comput. Phys., Boulder, Colorado, p. 178 (1990).Google Scholar
  10. [10]
    T.H. Pulliam, AIAA-89-0123, Reno, Nevada.Google Scholar
  11. [11]
    G.E. Karniadakis, B.B. Mikic, A.T. Patera, J. Fluid Mech., 192, 365 (1988).Google Scholar
  12. [12]
    A. Fortin, Comm. Appl. Numer. Methods, 4, 835 (1988).Google Scholar
  13. [13]
    M. Buffat, Ph.D. thesis, Université Lyon I (1991).Google Scholar
  14. [14]
    A. Arneodo, P. Coullet, C. Tresser, A. Libchaber, J. Maurer, D. D'Humières, Phys. D, 6, 385 (1983).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • A. Fortin
    • 1
  • M. Fortin
    • 2
  • J. J. Gervais
    • 2
  1. 1.Départment de Mathématiques AppliquéesMontréalCanada
  2. 2.Département de Mathématiques et de StatistiquesUniversité LavalQuébecCanada

Personalised recommendations