Child's Nervous System

, Volume 3, Issue 6, pp 334–341 | Cite as

Neuroal tube defects

Some remarks on the possible role of glycosaminoglycans in the genesis of the dysraphic state, the anomaly in the configuration of the posterior cranial fossa, and hydrocephalus
  • Concezio Di Rocco
  • Mario Rende
Original Papers


Recent developments in the field of experimentally induced neural tube defects (NTD) indicate that specific substances, namely the glycosaminoglycans (GAGs) may play a role in the genesis of spinal malformations. The authors report the results obtained by evaluating the GAGs in rat fetuses with NTD, secondary to the administration of Trypan Blue during pregnancy. A characteristic decrease in GAGs formation in the spinal and cranial structures as well as in the subependymal regions of the brain was found in the malformed fetuses. The authors hypothesize that this anomaly in GAGs formation is responsible for both the NTD and the associated malformations, namely hydrocephalus and hypoplasia of the posterior cranial fossa.

Key words

Neural tube defects Trypan Blue Glycosaminoglycans Hydrocephalus Meningocelemyelo Chiari malformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aufess A (1941) Defekt und Isolationsversuche an der Medullarplatte und ihrer Unterlagerung an Triton alpestris- und Amblystoma-Keimen mit besonderer Berücksichtigung der Rumpf-und Schwanzregion. Arch Entwicklungsmech Org (Wilhelm Roux) 141:248–339CrossRefGoogle Scholar
  2. 2.
    Bentliff S, Gordon CH (1965) Spinal cord formation distal to the posterior neuropore. Abstr Teratol Soc 5:4Google Scholar
  3. 3.
    Bignami A, Delpech B (1985) Extracellular matrix glycoprotein (hyaluronectin) in early cerebral development. Int J Dev Neurosci 3:301–307CrossRefGoogle Scholar
  4. 4.
    Boerema I (1929) Die Dynamik des Medullarrohrschlusses. Arch Entwicklungsmech Org (Wilhelm Roux) 115:601–615CrossRefGoogle Scholar
  5. 5.
    Brauer PR, Bolender DL, Markwald RR (1985) The distribution and spatial organization of the extracellular matrix encountered by mesencephalic neural crest cells. Anat Rec 211:57–68CrossRefGoogle Scholar
  6. 6.
    Cleland J (1883) Contribution to the study of spina bifida, encephalocele, and anencephalus. J Anat Physiol 17:257–291PubMedPubMedCentralGoogle Scholar
  7. 7.
    Cohen LA (1967) Absence of a foramen of Magendie in the dog, cat, rabbit, and goat. Arch Neurol 16:524–528CrossRefGoogle Scholar
  8. 8.
    Dekaben AS (1963) Anencephaly in early human embryos. J Neuropathol Exp Neurol 22:533–548CrossRefGoogle Scholar
  9. 9.
    Di Rocco C, Rende M (1985) Congenital hydrocephalus and mucopolysaccharides. Riv Neurosci Pediatr 1:61–67Google Scholar
  10. 10.
    Fell HB, Dingle JT (1963) Studies on the mode of action of excess vitamin A: lysosomal protease and the degradation of cartilage matrix. Biochem J 87:403–408CrossRefGoogle Scholar
  11. 11.
    Gardner WJ (1973) The dysraphic state: from syringomyelia to anencephaly (chaps 1–12). Excerpta Medica, AmsterdamGoogle Scholar
  12. 12.
    Gulamhusein AP, Moore JW, Beck F (1982) Trypan Blue teratogenesis in the rats: further observations in vitro. Teratology 26:289–297CrossRefGoogle Scholar
  13. 13.
    Hall BK (1977) Chondrogenesis of the somitic mesoderm. Adv Anat Embryol Cell Biol 53:4Google Scholar
  14. 14.
    Holtfreter J (1939) Gewebeaffinität, ein Mittel der embryonalen Formbildung. Arch Exp Zellforsch 23:169–209Google Scholar
  15. 15.
    Holtzer H (1951) Morphogenetic influence of the spinal cord on the axial skeleton and musculature. Anat Rec 109:373–374Google Scholar
  16. 16.
    Karfunkel P (1974) The mechanism of neural tube formation. Int Rev Cytol 38:245–271CrossRefGoogle Scholar
  17. 17.
    Keen JA (1962) Morphology of the skull in anencephalic monsters. S Afr J Lab Clin Med 8:1–18PubMedGoogle Scholar
  18. 18.
    Kosher RA, Lash JW, Minor RR (1973) Environmental enhancement of in vitro chondrogenesis. Stimulation of somite chondrogenesis by exogenous chondromucoprotein. Dev Biol 35:210–220CrossRefGoogle Scholar
  19. 19.
    Lash JW (1968) Chondrogenesis: genotypic and phenotypic expression. J Cell Physiol [Suppl 1] 72:35–46CrossRefGoogle Scholar
  20. 20.
    Lemire RJ (1969) Variations in development of the caudal neural tube in human embryos. Teratology 2:361–370CrossRefGoogle Scholar
  21. 21.
    Lendon RG (1972) An autoradiographic study of induced myelomeningocele. Dev Med Child Neurol [Suppl 27] 14:80–85Google Scholar
  22. 22.
    Lev R, Spicer SS (1964) Specific staining of sulphate groups with alcian blue at low pH. J Histochem Cytochem 12:309CrossRefGoogle Scholar
  23. 23.
    Linville G, Shepard T (1972) Neural tube closure defects caused by cytochalasin B. Nature New Biol 236:246–247CrossRefGoogle Scholar
  24. 24.
    Lipton BH, Jacobson AG (1974) Experimental analysis of the mechanisms of somite morphogenesis. Dev Biol 38:91–103CrossRefGoogle Scholar
  25. 25.
    Margolis RK, Margolis RU (1979) Structure and distribution of glycoproteins and glycosaminoglycans. In: Margolis RK, Margolis RU (eds) Complex carbohydrates of nervous tissue. Plenum Press, New York, pp 45–73CrossRefGoogle Scholar
  26. 26.
    Marin-Padilla M (1979) Notochordal-basichondrocranium relationships: abnormalities in experimental axial skeletal (dysraphic) disorders. J Embryol Exp Morphol 53:15–38PubMedGoogle Scholar
  27. 27.
    Marin-Padilla M, Marin-Padilla MT (1981) Morphogenesis of experimental induced Arnold-Chiari malformation. J Neurol Sci 50:29–55CrossRefGoogle Scholar
  28. 28.
    McLone DG, Suwa J, Collins JA, Poznanski S, Knepper PA (1983) Neurulation: biochemical and morphological studies on primary and secondary neural tube defects. Concepts Pediatr Neurosurg 4:15–29Google Scholar
  29. 29.
    Minor RR (1973) Somite chondrogenesis. A structural analysis. J Cell Biol 56:27–50CrossRefGoogle Scholar
  30. 30.
    Morgagni GB (1761) De sedibus et causis morborum per anatomen indagatis, vol I, epist XII. Venezia, ItalyGoogle Scholar
  31. 31.
    Noden DM (1978) The control of avian cephalic neural crest cytodifferentiation. I. Skeletal and connective tissues. Dev Biol 67:296–312CrossRefGoogle Scholar
  32. 32.
    Noden DM (1978) The control of avian cephalic neural crest cytodifferentiation. II. Neural tissues. Dev Biol 67:313–329CrossRefGoogle Scholar
  33. 33.
    O'Railly R, Muller F (1986) The normal and abnormal development of the nervous system in the early human embryo. Riv Neurosci Pediatr 2:89–94Google Scholar
  34. 34.
    Osaka K, Hirayama A, Matsumoto S (1977) Spina bifida in human embryos. Surgery for malformation of the central nervous system. Proceedings of the Fourth Congress of Japanese Pediatric Neurosurgery, 1977, pp 280–284Google Scholar
  35. 35.
    Osaka K, Tanimura T, Hirayama A, Matsumoto S (1978) Myelomeningocele before birth. J Neurosurg 49:711–724CrossRefGoogle Scholar
  36. 36.
    Packard DS, Jacobson AG (1976) The influence of axial structures on chick somite formation. Dev Biol 53:36–48CrossRefGoogle Scholar
  37. 37.
    Padget DH (1968) Spina bifida and embryonic neuroschisis. A causal relationship; definition of postnatal confirmations involving a bifid spine. John Hopkins Med J 123:233–252Google Scholar
  38. 38.
    Patten BM (1952) Overgrowth of neural tube in young human embryos. Anat Rec 113:381–393CrossRefGoogle Scholar
  39. 39.
    Recklinghausen F von (1886) Untersuchungen über die Spina Bifida. II. Über die Art und die Entstehung der Spina Bifida, ihre Beziehung zur Rückenmarks- und Darmspalte. Virchows Arch [A] 105:296–330CrossRefGoogle Scholar
  40. 40.
    Rende M (1986) Experimental models of neural tube defects: a review and clinical implications. Riv Neurosci Pediatr (J Pediatr Neurosci) 2:47–69Google Scholar
  41. 41.
    Rende M, Di Rocco D (1984) Metodi per lo studio macroscopico del SNC e delle strutture ossee cranio-vertebrali in feti di ratto normali e patologici. Proceedings of the XL Congress of the Italian Society of Anatomy, Como, 1984, pp 385–386Google Scholar
  42. 42.
    Richardson RR (1985) Congenital genetic murine (ch) hydrocephalus. Child's Nerv Syst 1:87–99CrossRefGoogle Scholar
  43. 43.
    Romanoff AL (1960) The avian embryo: a structural and functional development Macmillan, New YorkGoogle Scholar
  44. 44.
    Saint-Hilaire GI (1936) Histoire générale et particulière des anomalies, vol III. ParisGoogle Scholar
  45. 45.
    Schoenwolf GC, Fisher M (1983) Analysis of the effects of streptomyces hyaluronidase on formation of the neural tube. J Embryol Exp Morphol 73:1–15PubMedGoogle Scholar
  46. 46.
    Segal A, Schroeder M, Van Duuren BL (1971) Alteration of histones from mouse epidermal cells after incubation with elastase and hyaluronidase. J Histochem Cytochem 19:182–185CrossRefGoogle Scholar
  47. 47.
    Sensenig EC (1951) The early development of the meninges of the spinal cord in human embryos. Contrib Embryol 34:147–157Google Scholar
  48. 48.
    Stern CD (1984) Mini-review: Hyaluronidases in early embryonic development. Cell Biol Int Rep 8:703–717CrossRefGoogle Scholar
  49. 49.
    Strudel G (1953) Conséquences de l'excision de troncons du tube nerveux sur la morphogenèse de l'embryon de poulet et sur la différenciation de ses organes: Contribution a la genèse de l'orthosympathique. Ann Sci Nat Zool 15:251–319Google Scholar
  50. 50.
    Strudel G (1955) L'action morphogène du tube nerveux et de la corde sur la différenciation des vertèbres et des muscles vertébraux chex l'embryon de poulet. Arch Anat Microsc Morphol Exp 44:209–235PubMedGoogle Scholar
  51. 51.
    Strudel G (1972) Differenciation d'ébauches chondrogènes d'embryons de poulet cultivées in vitro sur différents milieux. CR Acad Sci (Paris) 274:112–115Google Scholar
  52. 52.
    Strudel G (1973) Etude de la différenciation du cartilage vertebral. Lyon Med 229:29–42Google Scholar
  53. 53.
    Strudel G (1973) Relationship between the chick periaxial metachromatic extracellular material and vertebral chondrogenesis. In: Kulonen E, Pikkarainen J (eds) Biology of fibroblast. Academic Press, New York London, pp 93–101Google Scholar
  54. 54.
    Strudel G (1973) Matériel extracellulaire périaxial et chondrogenèse vertébrale. Ann Biol Clin (Paris) 12:401–416Google Scholar
  55. 55.
    Toole BP (1973) Hyaluronate and hyaluronidase in morphogenesis and differentiation. Am Zool 13:1061–1065CrossRefGoogle Scholar
  56. 56.
    Toole BP (1976) Morphogenetic role of glycosaminoglycans (acid mucopolysaccharides) in brain and other tissues. In: Barondes S (ed) Neuronal recognition. Plenum Press, New York, pp 275–329CrossRefGoogle Scholar
  57. 57.
    Torack RM, Grave L (1980) Subependymal glycosaminoglycan networks in adult and developing rat brain. Histochemistry 68:55–65CrossRefGoogle Scholar
  58. 58.
    Tulpius N (1952) Observations medicae. AmsterdamGoogle Scholar
  59. 59.
    Weed LH (1917) Development of cerebro-spinal spaces in pig and in man. Contrib Embryol 5:1–116Google Scholar
  60. 60.
    Weston JA (1982) Motile and social behaviour of neural crest cells. In: Cell behaviour: a tribute to Michael Abercrombie. Cambridge University Press, London, pp 429–469Google Scholar
  61. 61.
    Weston JA, Butler SL (1966) Temporal factors affecting localization of neural crest cells in the chicken embryo. Dev Biol 14:246–266CrossRefGoogle Scholar
  62. 62.
    Wilson JG (1954) Congenital malformations produced by injecting azo blue into pregnant rats. Proc Soc Exp Biol Med 85:319–322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Concezio Di Rocco
    • 1
  • Mario Rende
    • 2
  1. 1.Institute of NeurosurgeryUniversità Cattolica School of MedicineRomeItaly
  2. 2.Institute of AnatomyUniversità Cattolica School of MedicineRomeItaly

Personalised recommendations