Molecular and General Genetics MGG

, Volume 178, Issue 2, pp 409–418 | Cite as

Genetic and physical characterization of lambda transducing phages (λfrdA) containing the fumarate reductase gene of Escherichia coli K12

  • Stewart T. Cole
  • John R. Guest


Two types of fumarate reductase transducing phages, λfrdA, carrying the wild-type frdA gene but differing in the orientation of a R.HindIII fragment of bacterial DNA were isolated from populations of recombinant transducing phages by their ability to complement the lesions of frdA mutants of E. coli. In lysogens, the cloned frdA gene was controlled by its own promoter and was fully responsive to normal regulatory stimuli. The λfrdA phages would not complement the defects of succinate dehydrogenase (sdh) mutants. Genetic studies showed that the R.HindIII fragment contains ampA, the cis-acting regulatory locus for the chromosomal β-lactamase gene ampC. No evidence for the presence of other markers was detected but the bacterial segment could be extended to produce plaque-forming phage derivatives containing the amp operon and a gene concerned with bacteriophage morphogenesis, groE(mop). A physical map of the 4.9 kb R.HindIII fragment was constructed by restriction analysis and flanking fragments were identified by DNA: DNA hybridization analysis. The frdA region contained a single asymmetric R.EcoRI target 3.33 kb from one end and the orientation of the physical map with respect to the E. coli linkage map was established.


Fumarate Succinate Dehydrogenase ampC Reductase Gene ampA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachmann, B., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K12. Bacteriol. Rev. 40, 116–167 (1976)Google Scholar
  2. 2.
    Boonstra, J., Downie, J.A., Konings, W.N.: Energy supply for active transport in anaerobically grown Escherichia coli. J. Bacteriol. 136, 844–853 (1978)Google Scholar
  3. 3.
    Borck, K., Beggs, J.D., Brammar, W.J., Hopkins, A.S., Murray, N.E.: The construction in vitro of transducing derivatives of phage lambda. Mol. Gen. Genet. 146, 199–207 (1976)Google Scholar
  4. 4.
    Clarke, L., Carbon, I.: A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome. Cell 9, 91–99 (1976)Google Scholar
  5. 5.
    Creaghan, I.T., Guest, J.R.: Amber mutants of the α-ketoglutarate dehydrogenase gene of Escherichia coli K12. J. Gen. Microbiol 71, 207–220 (1972)Google Scholar
  6. 6.
    Creaghan, I.T., Guest, J.R.: Succinate dehydrogenase dependent nutritional requirement for succinate in mutants of Escherichia coli K12. J. Gen. Microbiol. 107, 1–13 (1978)Google Scholar
  7. 7.
    Cole, S.T., Guest, J.R.: Studies with artificially-constructed fumarate reductase transducing phages (λfrdA). Soc. Gen. Microbiol. Quart. 6, 42–43 (1978)Google Scholar
  8. 8.
    Cole, S.T., Guest, J.R.: Amplification and aerobic synthesis of fumarate reductase in ampicillin-resistant mutants of Escherichia coli K12. FEMS Microb. Letts. 5, 65–67 (1979)Google Scholar
  9. 9.
    Cole, S.T., Guest, J.R.: Production of a soluble form of fumarate reductase by multiple gene duplication in Escherichia coli K12. Eur. J. Biochem. 102, 65–71 (1979)Google Scholar
  10. 10.
    Davidson, N., Szybalski, W.: Physical and chemical characteristics of lambda DNA. In: The bacteriophage lambda. (A.D. Hershey, ed.), pp. 45–82. New York: Cold Spring Harbor Press 1971Google Scholar
  11. 11.
    Davis, R.W., Simon, M., Davidson, N.: Electron microphope heteroduplex methods for mapping regions of base sequence homology in nucleic acids. In: Methods in enzymology (Grossman, L., Moldave, K., eds.), Vol. 21, pp. 413–428 New York: Academic Press Inc. 1971Google Scholar
  12. 12.
    Edlund, T., Grundström, T., Normark, S.: Isolation and characterization of DNA repetition carrying the chromosomal β-lactamase gene of Escherichia coli K-12. Mol. Gen. Genet. 173, 115–125. (1979)Google Scholar
  13. 13.
    Georgepoulos, C.P., Hohn, B.: Identification of a host protein necessary for bacteriophage morphogenesis (the groE gene product). Proc. Natl. Acad. Sci. U.S.A. 75, 131–135 (1978)Google Scholar
  14. 14.
    Gottschalk, G., Andreesen, J.R.: Energy metabolism in anaerobes. In: Microbial biochemistry (Quayle, J.R., ed.). Int. Rev. Biochem., Vol. 21, pp. 85–115. Baltimore: University Park Press 1979Google Scholar
  15. 15.
    Guest, J.R., Nice, H.M.: chromosomal location of the mop(gro E) gene necessary for bacteriophage morphogenesis in Escherichia coli. J. Gen. Microbiol. 109, 329–333 (1978)Google Scholar
  16. 16.
    Haddock, B.A., Jones, C.W.: Bacterial respiration. Bacteriol. Rev. 41, 47–99 (1977)Google Scholar
  17. 17.
    Kaiser, A.D., Hogness, D.S.: The transformation of E. coli with deoxyribonucleic acid isolated from bacteriophage lambda λdg. J. Mol. Biol. 2, 392–415 (1960)Google Scholar
  18. 18.
    Kaiser, K., Murray, N.E.: Physical characterization of the “Rac prophage” in E. coli K12. Mol. Gen. Genet. 175, 159–174 (1979)Google Scholar
  19. 19.
    Kröger, A.: Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors. In: Microbial energetics (Haddock, B.A., Hamilton, W.A., eds.) Symp. Soc. gen. Microbiol., Vol. 27, pp. 61–93. Cambridge: Cambridge University Press 1977Google Scholar
  20. 20.
    Kröger, A.: Fumarate as terminal acceptor of phosphorylative electron transport. Biochim. Biophys. Acta 505, 129–145 (1978)Google Scholar
  21. 21.
    Lambden, P.R., Guest, J.R.: Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor. J. Gen. Microbiol. 97, 145–160 (1976)Google Scholar
  22. 22.
    Lennox, E.S.: Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190–206 (1955)Google Scholar
  23. 23.
    Maniatis, T., Jeffrey, A., Kleid, D.G.: Nuceotide sequence of the rightward operator of phage λ. Proc. Natl. Acad. Sci. U.S.A. 72, 1184–1188 (1975)Google Scholar
  24. 24.
    Murray, N.E., Manduca de Ritis, P., Foster, L.A.: DNA targets for the E. coli K restriction system analysed genetically in recombinants between phages phi80 and lambda. Mol. Gen. Genet. 120, 261–280 (1973)Google Scholar
  25. 25.
    Southern, E.M.: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol 98, 503–518 (1975)Google Scholar
  26. 26.
    Spencer, M.E., Guest, J.R.: Isolation and properties of fumarate reductase mutants of Escherichia coli. J Bacteriol. 114, 563–570 (1973)Google Scholar
  27. 27.
    Spencer, M.E., Guest, J.R.: Proteins of the inner membrane of Escherichia coli: Changes in composition associated with anaerobic growth and fumarate refuctase amber mutation. J. Bacteriol. 117, 954–959 (1974)Google Scholar
  28. 28.
    Spencer, M.E., Lebeter, V.M., Guest, J.R.: Location of the aspartase gene (aspA) on the linkage map of Escherichia coli K12. J. Gen. Microbiol. 97, 73–82 (1976)Google Scholar
  29. 29.
    Thauer, R.K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)Google Scholar
  30. 30.
    Wimpenny, J.W.T., Cole, J.A.: The regulation of metabolism in facultative bacteria III. The effect of nitrate. Biochim. Biophys. Acta 148, 233–242 (1967)Google Scholar
  31. 31.
    Yamamoto, K.R., Alberts, B.M., Benzinger, R., Lawhorne, L., Theiber, G.: Rapid bacteriophage sedimentation in the presence of polythylene glycol and its application to large-scale virus production. Virology 40, 734–744 (1970)Google Scholar
  32. 32.
    Zissler, J., Signer, E., Schaeffer, E.: The role of recombination in growth of bacteriphage lambda. II. Inhibition of growth by prophage P2. In: The bacteriophage lambda (A.D. Hershey, ed.), pp 469–475, New York: Cold Spring Harbor Press 1971Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Stewart T. Cole
    • 1
  • John R. Guest
    • 1
  1. 1.Department of MicrobiologyUniversity of SheffieldSheffieldEngland

Personalised recommendations