Molecular and General Genetics MGG

, Volume 178, Issue 2, pp 309–315

Isolation and characterization of dam+ revertants and suppressor mutations that modify secondary phenotypes of dam-3 strains of Escherichia coli K-12

  • Bonnie R. McGraw
  • M. G. Marinus
Article

Summary

Bacteria mutant in the dam (DNA adenine methylation) gene and in either recA or recB or recC genes are inviable (Virm- phenotype). From crosses between dam-3 bacteria and recA1 or recB21 recC22 strains, Vrm+ recombinants were recovered. Among these recombinants, Dam+ revertants were present which did not show the phenotypes normally associated with dam-3 bacteria. Three classes of indirectly suppressed strains (dam-3 genotype) were also recovered which showed alterations in the secondary phenotypes normally associated with dam-3 bacteria. These strains contained a second unlinked mutation in either mutL or mutS or sin. In addition, mutation in either sbcA or sbcB suppresses the Vrm- phenotype of dam-3 recB21 recC22 strains.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bale, A., d'Alarcao, M., Marinus, M.G.: Characterization of DNA adenine methylation mutants of Escherichia coli K-12. Mutat. Res. 59, 157–165 (1979)Google Scholar
  2. Barbour, S.D., Nagaishi, H., Templin, A., Clark, A.J.: Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of Rec- mutations. Proc. Natl. Acad. Sci. U.S.A. 67, 128–135 (1970)Google Scholar
  3. Cox, E.C., Degmen, G.E., Scheppe, M.L.: Mutator gene studies in Escherichia coli: The mutS gene. Genetics 72, 551–567 (1972)Google Scholar
  4. Glickman, B., van den Elsen, P., Radman, M.: Induced mutagenesis in dam - mutants of Escherichia coli: A role for 6-methyl adenine residues in mutation avoidance. Mol. Gen. Genet. 163, 307–312 (1978)Google Scholar
  5. Goze, A., Sedgwick, S.: Increased UV-inducibility of SOS functions in a dam-3 mutant of Escherichia coli K12 uvrA. Mutat. Res. 52, 323–331 (1978)Google Scholar
  6. Hall, J.D., Howard-Flanders, P.: Temperature-sensitive recA mutant of Escherichia coli K-12: Deoxyribonucleic acid metabolism after ultraviolet irradiation. J. Bacteriol. 121, 892–900 (1975)Google Scholar
  7. Kushner, S.R., Nagaishi, M., Clark, A.J.: Indirect suppression of recB and recC mutations by exonuclease I deficiency. Proc. Natl. Acad. Sci. U.S.A. 69, 1366–1370 (1972)Google Scholar
  8. Lloyd, R., Low, K.B., Godson, N., Birge, E.: Isolation and characterization of a mutant of Escherichia coli K-12 with a temperature sensitive RecA- phenotype. J. Bacteriol. 120, 407–415 (1974)Google Scholar
  9. Marinus, M.G.: Location of DNA methylation genes on the Escherichia coli K-12 genetic map. Mol. Gen. Genet. 127, 47–55 (1973)Google Scholar
  10. Marinus, M.G., Konrad, E.B.: Hyper-recombination in dam mutants of Escherichia coli K-12. Mol. Gen. Genet. 149, 273–277 (1976)Google Scholar
  11. Marinus, M.G., Morris, N.R.: Isolation of DNA methylase mutants from Escherichia coli K-12. J. Bacteriol. 114, 1143–1150 (1973)Google Scholar
  12. Marinus, M.G., Morris, N.R.: Biological function for 6-methyladenine residues in the DNA of Escherichia coli K-12. J. Mol. Biol. 85, 309–322 (1974)Google Scholar
  13. Marinus, M.G., Morris, N.R.: Pleiotropic effects of a DNA adenine methylation mutation (dam-3)_in Escherichia coli K-12. Mutat. Res. 28, 15–26 (1975)Google Scholar
  14. Rydberg, B.: Bromouracil mutagenesis in Escherichia coli. Evidence for involvement of mismatch repair. Mol. Gen. Genet. 152, 19–28 (1977)Google Scholar
  15. Rydberg, B.: Bromouracil mutagenesis and mismatch repair in mutator strains of Escherichia coli. Mutat. Res. 52, 11–24 (1978)Google Scholar
  16. Siegel, E.C., Vaccaro, K.K.: The reversion of trp frameshift mutations in mut, polA, lig and dnaE mutant strains of Escherichia coli. Mutat. Res. 50, 9–17 (1978)Google Scholar
  17. Siegel, E.C., Ivers, J.J.: mut-25, a mutation to mutator linked to purA in Escherichia coli. J. Bacteriol. 121, 525–530 (1975)Google Scholar
  18. Stacey, K.A., Simson, E.: Improved method for the isolation of thymine requiring mutants of Escherichia coli. J. Bacteriol. 90, 554–560 (1965)Google Scholar
  19. Tomizawa, J., Ogawa, M.: Structural genes of ATP-dependent deoxyribonuclease of Escherichia coli. Nature New Biol. 239, 14–16 (1972)Google Scholar
  20. Zieg, J., Maples, V.F., Kushner, S.R.: Recombination levels of Escherichia coli K-12 mutants deficient in various replication, recombination of repair genes. J. Bacteriol. 134, 958–966 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Bonnie R. McGraw
    • 1
  • M. G. Marinus
    • 1
  1. 1.Department of PharmacologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations