Advertisement

Molecular and General Genetics MGG

, Volume 225, Issue 2, pp 225–230 | Cite as

Nucleo-cytoplasmic incompatibility in cybrid plants possessing an Atropa genome and a Nicotiana plastome

  • S. Kushnir
  • E. Babiychuk
  • M. Bannikova
  • V. Momot
  • I. Komarnitsky
  • N. Cherep
  • Y. Gleba
Article

Summary

Twenty-nine cybrids possessing an Atropa belladonna nuclear genome and a Nicotiana tabacum plastome were selected from two independent protoplast fusion experiments. In contrast to the previously described reciprocal, green and fertile cybrids with a Nicotiana nuclear genome and an Atropa plastome (Kushnir et al. 1987), the plants obtained were totally chlorophyll-deficient. An Atropa nuclear genome and a Nicotiana plastome from these chlorophyll-deficient cybrids were combined with an Atropa or a Scopolia plastome and a Nicotiana nuclear genome, respectively, in control fusion experiments. All of these nuclear genome/plastome combinations gave rise to normal, green plants. Therefore, we conclude that an N. tabacum plastome is incompatible with an A. belladonna nuclear genome.

Key words

Somatic hybridization Cybrids Nucleocytoplasmic incompatibility Nicotiana Atropa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vehicles for transformation of higher plants. EMBO J 4:277–284Google Scholar
  2. Archer EK, Bonnett HT (1987) Characterization of a virescent chloroplast mutant of tobacco. Plant Physiol 83:920–925Google Scholar
  3. D'Arcy WG (1979) The classification of the Solanaceae. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae, number 7. Academic Press, London, pp 3–49Google Scholar
  4. Gleba YuYu, Meshkiene I (1985) Genetic manipulation and analysis of higher plant plasmagenes using cell fusion. BioEssays 1:199–202Google Scholar
  5. Gleba Yu, Sytnik K (1984) Protoplast fusion. Springer Verlag, Berlin, p 203Google Scholar
  6. Gleba YuYu, Momot VP, Cherep NN, Skarzhynskaya MV (1982) Intertribal hybrid cell lines of Atropa belladonna + Nicotiana chinensis obtained by cloning individual protoplast fusion products. Theor Appl Genet 62:75–79Google Scholar
  7. Gleba YuYu, Momot VP, Okolot AN, Skarzhynskaya MV, Kotov V (1983) Genetic processes in intergeneric hybrids Atropa + Nicotiana. Theor Appl Genet 65:269–276Google Scholar
  8. Gleba YuYu, Komarnitsky IK, Kolesnik NN, Meshkiene I, Martyn GI (1985) Transmission genetics of the somatic hybridization process in Nicotiana. II. Plastome heterozygotes. Mol Gen Genet 198:476–481Google Scholar
  9. Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:105–110Google Scholar
  10. Kihara H (1982) Importance of cytoplasm in plant genetics. Cytologia 47:435–450Google Scholar
  11. Kirk JTO, Tilney-Bassett RAE (1978) The plastids: the chemistry, structure, growth and inheritance. Elsevier North Holland, New York, AmsterdamGoogle Scholar
  12. Kumar A, Cocking EC (1987) Protoplast fusion: a novel approach to organelle genetics of higher plants. Am J Bot 74:1289–1303Google Scholar
  13. Kushnir SG, Schlumukov LR, Pogrebnyak NJ, Gleba Y (1986) The cell-engineering synthesis of the cybrids, possessing the Nicotiana tabacum L. nucleus and Atropa belladonna L. plastids. Proc Acad Sci USSR 291:1238–1240Google Scholar
  14. Kushnir SG, Schlumukov LR, Pogrebnyak NJ, Berger S, Gleba Y (1987) Functional cybrid plants possessing a Nicotiana genome and an Atropa plastome. Mol Gen Genet 209:159–163Google Scholar
  15. Larkin PJ, Scowcroft WR (1981) Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214Google Scholar
  16. Maliga P, Breznovits AS, Marton L, Joo F (1975) Non-mendelian streptomycin-resistant tobacco mutant with altered chloroplasts and mitochondria. Nature 255:401–402Google Scholar
  17. Medgyesy P, Fejes E, Maliga P (1985) Interspecific chloroplast recombination in a Nicotiana somatic hybrid. Proc Natl Acad Sci USA 82:6960–6964Google Scholar
  18. Menczel L, Nagy F, Kiss ZR, Maliga P (1981) Streptomycin resistant and sensitive somatic hybrids of Nicotiana tabacum + Nicotiana knightiana, correlation of resistance to N. tabacum plastids. Theor Appl Genet 59:191–195Google Scholar
  19. Müller AJ (1983) Genetic analysis of nitrate reductase-deficient tobacco plants regenerated from mutant cells. Evidence for duplicate structural genes. Mol Gen Genet 192:275–281Google Scholar
  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497Google Scholar
  21. Shirzadegan M, Christey M, Earle ED, Palmer JD (1989) Rearrangement, amplification and assortment of mitochondrial DNA molecules in cultured cells of Brassica campestris. Theor Appl Genet 77:17–25Google Scholar
  22. Stubbe W, Herrmann RG (1982) Selection and maintenance of plastome mutants and interspecific genome/plastome hybrids from Oenothera. In: Edelman V, Hallick RB, Chua NH (eds) Methods in chloroplast molecular biology. Elsevier Biomedical Press, Amsterdam, New York, pp 149–165Google Scholar
  23. Svab Z, Maliga P (1986) Nicotiana tabacum mutants with chloroplast encoded streptomycin resistance and pigment deficiency. Theor Appl Genet 72:637–643Google Scholar
  24. Thanh ND, Pay A, Smith MA, Medgyesy P, Marton L (1988) Intertribal chloroplast transfer by protoplast fusion between Nicotiana tabacum and Salpiglossis sinuata. Mol Gen Genet 213:186–190Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • S. Kushnir
    • 1
  • E. Babiychuk
    • 1
  • M. Bannikova
    • 1
  • V. Momot
    • 1
  • I. Komarnitsky
    • 1
  • N. Cherep
    • 1
  • Y. Gleba
    • 1
  1. 1.Institute of Cell Biology and Genetic EngineeringUkrainian Academy of SciencesKievUSSR

Personalised recommendations