Advertisement

Plant Cell Reports

, Volume 5, Issue 4, pp 302–305 | Cite as

Alkaloid accumulation in Ca-alginate entrapped cells of Catharanthus roseus: Using a limiting growth medium

  • Florence Majerus
  • Alain Pareilleux
Article

Abstract

The limitation of growth of Catharanthus roseus cells was investigated with a view to their entrapment in a Ca-alginate matrix. An examination of the effects of lowered 2,4-D and phosphate concentrations on cell viability and indole alkaloid biosynthesis enabled a growth limiting and product formation stimulating medium to be designed. Entrapped cells showed a retention of both respiratory activity and biosynthetic capacity over an extended period of time compared with free cells. Evidence is presented which suggests that immobilization in Ca-alginate beads acts to stabilize cells, resulting in enhanced product accumulation.

Keywords

Cell Viability Alkaloid Growth Medium Indole Extended Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

2,4-D

2,4-dichlorophenoxyacetic acid

d.w.

dry weight

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodelius P., Deus B., Mosbach K., Zenk M.H. (1979) FEBS Lett. 103: 93–97.Google Scholar
  2. Brodelius P., Nilsson K. (1980) FEBS Lett. 122: 312–316.Google Scholar
  3. Brodelius P., Nilsson K. (1983) Eur. J. Appl. Microbiol. Biotechnol. 17: 275–280.Google Scholar
  4. Galun E., Aviv D., Dantes A., Freeman A. (1983) Planta Med. 49: 9–13.Google Scholar
  5. Gamborg O.L., Miller R.A., Ojima K. (1968) Exp. Cell Res. 50: 151–158.Google Scholar
  6. Jones A., Veliky I.A. (1981) Eur. J. Appl. Microbiol. Biotechnol. 13: 84–89.Google Scholar
  7. Jirku V., Mocek T., Vanek T., Krumphanzl V., Kubanek V. (1981) Biotechnol. Lett. 3: 447–450.Google Scholar
  8. Knobloch K.H., Berlin J. (1980) Z. Naturforsch. 35C: 551–556.Google Scholar
  9. Knobloch K.H., Beutnagel G., Berlin J. (1981) Planta 153: 582–585.Google Scholar
  10. Knobloch K.H., Berlin J. (1983) Plant Cell Tissue Organ Cult. 2: 333–340.Google Scholar
  11. Leguay J.J., Guern J. (1977) Plant Physiol. 60: 265–270.Google Scholar
  12. Lindsey K., Yeoman M.M. (1983) J. Exp. Bot. 34: 1055–1065.Google Scholar
  13. Lindsey K., Yeoman M.M., Black G.M., Mavituna F. (1983) FEBS Lett. 155: 143–149.Google Scholar
  14. Pareilleux A., Vinas R. (1984) Appl. Microbiol. Biotechnol. 19: 316–320.Google Scholar
  15. Philipps R., Henshaw G.G. (1977) J. Exp. Bot. 28: 785–794.Google Scholar
  16. Renaudin J.P. (1981) Plant Sc. Lett. 22: 59–69.Google Scholar
  17. Roustan J.P., Ambid C., Fallot J. (1982) Physiol. Vég. 20: 523–532.Google Scholar
  18. Shuler M.L. (1981) Ann. N. Y. Acad. Sci. 369: 65–69.Google Scholar
  19. Vinas R., Pareilleux A. (1982) Physiol. Vég. 20: 219–225.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Florence Majerus
    • 1
  • Alain Pareilleux
    • 1
  1. 1.Département de Génie Biochimique et Alimentaire, UA-CNRS-No 544Institut National des Sciences AppliquéesToulouse CédexFrance

Personalised recommendations