Advertisement

Plant Cell Reports

, Volume 5, Issue 4, pp 239–242 | Cite as

Alkaloid production by hairy root cultures in Atropa belladonna

  • Hiroshi Kamada
  • Nobuyuki Okamura
  • Motoyoshi Satake
  • Hiroshi Harada
  • Koichiro Shimomura
Article

Abstract

Hairy roots were induced by inoculation of stems of sterile plants of Atropa belladonna with Agrobacterium rhizogenes. The axenic culture of the hairy roots isolated from the stems proliferated 60 fold as based on the initial fresh weight after one month of culture. The presence of atropine and scopolamine in hairy roots were examined by TLC and HPLC. Their amounts were analyzed by GLC. The results show that the amount of the two alkaloids in the axenic cultures was the same as or even higher than those of normal plants grown in the field.

Keywords

Alkaloid Atropine Hairy Root Scopolamine Root Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhandary SBR, Collin HA, Thomas E, Street HE (1969) Ann Bot 33:647–656Google Scholar
  2. Chilton M-D, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Nature 295:432–434Google Scholar
  3. Deus-Neuman B, Zenk MH (1984) Planta Medica 50:427–431Google Scholar
  4. Fujita Y, Hara Y, Suga C, Morimoto T (1981) Plant cell Reports 1:61–63Google Scholar
  5. Hashimoto T, Yamada Y (1983) Planta Medica 47:195–199Google Scholar
  6. Hiraoka N, Tabata M (1974) Phytochem 13:1671–1675Google Scholar
  7. Huffman GA, White FF, Gordon MP, Nester EW (1984) J Bacteriol 157:269–276Google Scholar
  8. Kagei K, Hemmi S, Shirai H, Hasegawa S, Toyoshima S (1978) Shoyakugaku Zasshi 32:222–227Google Scholar
  9. Ooms G, Karp A, Burrell MM, Twell D, Roberts J (1985) Theoret Appl Genet 70:440–446Google Scholar
  10. Otten LABM, Schilperoort RA (1978) Biochim Biophys Acta 527:497–500Google Scholar
  11. Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Mol Gen Genet 190:204–214Google Scholar
  12. Szöke E, Dung NN, Verzár-Petri G, Potoczki A (1982) Acta Bot Acad Sci Hung 28:403–410Google Scholar
  13. Tabata M, Yamamoto H, Hiraoka N, Konoshima M (1972) Phytochem 11:949–955Google Scholar
  14. Tepfer DA (1984) Cell 37:959–967Google Scholar
  15. Trevelyan WE, Procter DP, Harrison JP (1950) Nature 166:444–445Google Scholar
  16. Vervliet G, Holsters M, Teuchy H, Montagu M van, Schell J (1975) J gen Virol 26:33–48Google Scholar
  17. Wagner H, Bladt S, Zgainski EM (1984) “Plant Drug Analysis. A Thin Layer Chromatography Atlas” (Translated by A. Scott) Springer-Verlag, Berlin, pp 300–301Google Scholar
  18. West FR Jr, Mika ES (1957) Bot Gaz 119:50–54Google Scholar
  19. White FF, Nester EW (1980) J Bacteriol 141:1134–1141Google Scholar
  20. Yamada S, Noda N, Hayakawa J, Uno K (1984) Yakugaku Zasshi 104:199–203Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Hiroshi Kamada
    • 1
  • Nobuyuki Okamura
    • 2
  • Motoyoshi Satake
    • 3
  • Hiroshi Harada
    • 4
  • Koichiro Shimomura
    • 3
  1. 1.Gene Experiment CenterUniversity of TsukubaIbaraki-kenJapan
  2. 2.Faculty of Pharmaceutical SciencesFukuyama UniversityFukuyama-shi, Hiroshima-kenJapan
  3. 3.Tsukuba Medicinal Plant Research StationNational Institute of Hygienic SciencesIbaraki-kenJapan
  4. 4.Institute of Biological SciencesUniversity of TsukubaIbaraki-kenJapan

Personalised recommendations