Advertisement

Plant Cell Reports

, Volume 6, Issue 5, pp 396–399 | Cite as

Genetic transformation of flax (Linum usitatissimum) by Agrobacterium tumefaciens: regeneration of transformed shoots via a callus phase

  • Nazir Basiran
  • Philip Armitage
  • Roderick John Scott
  • John Draper
Article

Abstract

Genetic transformation of flax (Linum usitatissimum) has been achieved using an A. tumefaciens strain carrying a non-oncogenic Ti plasmid-derived vector containing a chimaeric npt-II gene and a wild type nopaline synthase gene. Fertile, transformed shoots were most easily obtained from Kmr callus developing on hypocotyl sections. The totipotency of the Kmr callus was dependent upon its origin. T-DNA was visualised by Southern blotting in all Kmr tissues. Efficient expression of nopaline synthase and the chimaeric npt-II gene was found in transformed Kmr callus and regenerated shoots.

Keywords

Southern Blotting Genetic Transformation Regenerate Shoot Agrobacterium Tumefaciens Nopaline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

npt-II

neomycin phosphotransferase II gene

NPT-II

neomycin phosphotransferase II

nos

nopaline synthase gene promoter

Kmr

kanamycin resistant

BAP

6-benzylaminopurine

NAA

α-naphthaleneacetic acid

MSD4×2

medium D4×2 based on Murashige & Skoog medium (see Scott & Draper, 1987)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barakat M.N., Cocking E.C. (1983) Plant Cell Reports 2: 314–317.Google Scholar
  2. Bennet M.D., Smith J.B. (1976) Phil. Trans. Roy. Soc. Lond. B. 274: 227–273.Google Scholar
  3. Gamborg O.L., Shyluk J.P. (1976) Bot. Gaz. 137: 301–306.Google Scholar
  4. Gamborg O.L., Miller R.A., Ojima K. (1968) Exp. Cell Res. 50: 151–158.Google Scholar
  5. Hain, R., Stabel, P., Czernilofsky, A.P., Steinbiss, H.H., Herrera-Estrella, L. Schell, J. (1985) Mol. Gen. Genet. 199: 161–168.Google Scholar
  6. Hepburn A.G., Clarke L.E., Blundy K.S., White J. (1983) J. Mol. Appl. Genet. 2: 211–224.Google Scholar
  7. Johnson C.M., Stout R.R., Broyer T.C., Carlton A.B. (1957) Plant and Soil 8: 337–353.Google Scholar
  8. Link G.K., Eggers V. (1946) Bot. Gaz. 107: 441–454.Google Scholar
  9. McHughen A., Swartz M. (1984) J. Plant Physiol. 117: 109–117.Google Scholar
  10. Murray B.E., Handyside R.J., Keller W.A. (1977) Can. J. Genet. 19: 177–186.Google Scholar
  11. Rybczynski J.J. (1975) Genet. Pol. 16: 161–172.Google Scholar
  12. Scott R.J., Draper J. (1987) Plant Mol. Biol. 8: 265–274.Google Scholar
  13. Zambryski P., Joos H., Genetello C., Leemans J., Van Montagu M., Schell J. (1983) EMBO J. 2: 2143–2150.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Nazir Basiran
    • 1
  • Philip Armitage
    • 1
  • Roderick John Scott
    • 1
  • John Draper
    • 1
  1. 1.Department of BotanyUniversity of LeicesterLeicesterUK

Personalised recommendations