Advertisement

Molecular and General Genetics MGG

, Volume 126, Issue 4, pp 367–374 | Cite as

Deficiency in methionine adenosyltransferase resulting in limited repressibility of methionine biosynthetic enzymes in Aspergillus nidulans

  • Norman J. Pieniążek
  • Iwona M. Kowalska
  • Piotr P. Stępień
Article

Summary

In Aspergillus nidulans methionine can be metabolized to cysteine. Mutants blocked in this pathway were selected and divided into three groups representing three separate loci: mecA, mecB and mecC. mecC13 mutant possesses a low level of methionine adenosyltransferase and shows a limited extent of methionine-caused repression of three enzymes of the methionine biosynthetic pathway: sulfate permease, sulfite reductase and 0-acetylhomoserine sulfhydrylase. Intracellular pools of methionine do not differ markedly in the mutant and in wild type, while the S-adenosylmethionine (SAM) pool is decreased in the mutant. Methionine adenosyltransferase was found to be inducible by methionine, SAM is postulated to be involved in regulation of methionine biosynthetic enzymes in A. nidulans. Differences in regulation of methionine biosynthesis in A. nidulans, Escherichia coli and Saccharomyces cerevisiae are discussed.

Keywords

Enzyme Escherichia Coli Cysteine Methionine Aspergillus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cherest, H., Surdin-Kerjan, Y., Antoniewski, J., de Robichon-Szulmajster, H.: S-adenosylmethionine mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae. J. Bact. (in press) (1973a)Google Scholar
  2. Cherest, H., Surdin-Kerjan, Y., Antoniewski, J., de Robichn-Szulmajster, H.: Effects of regulatory mutations upon methionine biosynthesis in Saccharomyces cerevisiae: loci eth2-eth3-eth10. J. Bact. (in press) (1973b)Google Scholar
  3. Chou, T.-C., Lombardini, J. B.: A rapid assay procedure for ATP: L-methionine S-adenosyltransferase. Biochim. biophys. Acta (Amst.) 276, 399–406 (1972)CrossRefGoogle Scholar
  4. Cove, D. J.: The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim. biophys. Acta (Amst.) 113, 51–56 (1966)CrossRefGoogle Scholar
  5. Ellman, G. L.: A colorimetric method for determining low concentrations of mercaptans. Arch. Biochem. Biophys. 74, 445–450 (1958)CrossRefGoogle Scholar
  6. Gajewski, W., Litwinska, J.: Methionine loci and their suppressors in Aspergillus nidulans. Molec. gen. Genet. 102, 210–220 (1968)CrossRefGoogle Scholar
  7. Holloway, C. T., Greene, R. C., Su, C.-H.: Regulation of S-adenosylmethionine synthetase in Escherichia coli. J. Bact. 104, 734–747 (1970)PubMedGoogle Scholar
  8. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randal, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)PubMedPubMedCentralGoogle Scholar
  9. Mertz, J. E., Spence, K. D.: Methionine adenosyltransferase and ethionine resistance in Saccharomyces cerevisiae. J. Bact. 111, 778–783 (1972)PubMedGoogle Scholar
  10. Paszewski, A., Grabski, J.: β-cystathionase and 0-acetylhomoserine sulfhydrylase as the enzymes of alternative methionine biosynthetic pathways in Aspergillus nidulans. Acta biochim. pol. 20, 159–168 (1973)PubMedGoogle Scholar
  11. Pieniążek, N. J., Paszewski, A.: The use of media containing sodium selenate for selecting mutants of Aspergillus nidulans. Aspergillus News Letter 11, 12 (1970)Google Scholar
  12. Pieniążek, N. J., Stępień, P. P., Paszewski, A.: An Aspergillus nidulans mutant lacking cystathionine β-synthase: identity of L-serine sulfhydrylase with cystathionine β-synthase and its distinctness from 0-acetyl-L-serine sulfhydrylase. Biochim. biophys. Acta (Amst.) 297, 37–47 (1973)CrossRefGoogle Scholar
  13. Pigg, C. J., Sorsoli, W. A., Porks, L. W.: Induction of the methionine—activating enzyme in Saccharomyces cerevisiae. J. Bact. 87, 920–923 (1964)PubMedGoogle Scholar
  14. Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, R. D., Bufton, A. W. J.: The genetics of Aspergillus nidulans. Advanc. Genet. 5, 141–238 (1953)CrossRefGoogle Scholar
  15. Sheehan, J. C., Goodman, M., Hess, G. P.: Peptide derivatives containing hydroxyaminoacids. J. Amer. chem. Soc. 78, 1367–1369 (1956)CrossRefGoogle Scholar
  16. Siegel, L. M.: A direct microdetermination of sulfide. Analyt. Biochem. 11, 126–132 (1965)CrossRefGoogle Scholar
  17. Vito, P. C. de, Dreyfuss, J.: Metabolic regulation of adenosine triphosphate sulfurylase in yeast. J. Bact. 88, 1341–1348 (1964)Google Scholar
  18. Wiebers, J. L., Garner, H. R.: Acyl derivatives of homoserine as substrates for homocysteine synthesis in Neurospora crassa, yeast and Escherichia coli. J. biol. Chem. 242, 5644–5649 (1967PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Norman J. Pieniążek
    • 1
  • Iwona M. Kowalska
    • 1
  • Piotr P. Stępień
    • 1
  1. 1.Department of GeneticsWarsaw UniversityWarsawPoland

Personalised recommendations