Advertisement

Plant Cell Reports

, Volume 4, Issue 4, pp 220–223 | Cite as

Cultivation of cell cultures of Berberis wilsonae in 20-l airlift bioreactors

  • M. Breuling
  • A. W. Alfermann
  • E. Reinhard
Article

Abstract

Suspension cultures of Berberis wilsonae produce 4 berberine-type alkaloids: berberine, palmatine, columbamine and jatrorrhizine. In particular the formation of the phenolic alkaloids columbamine and jatrorrhizine and of berberine proves to be dependent on the concentration of dissolved oxygen. With higher aeration rates, berberine and jatrorrhizine yields can be increased considerably. Thus we reached an alkaloid yield of more than 3 g × 1−1 with 50% dissolved oxygen tension in the medium. As far as we know this is one of the best results in fermenting of alkaloid-producing cell cultures.

Keywords

Oxygen Cell Culture Alkaloid Suspension Culture Oxygen Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

pO2

dissolved oxygen concentration in % saturation (using air)

HPLC

high-performance liquid chromatography

vvm

volume air × volume medium−1 × minute−1

rpm

revolutions per minute

IAA

indole-3-acetic acid

2,4-D

2,4-dichlorophenoxy acetic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beecher CWW, Kelleher WJ (1983) Tetrahedron letters 24: 469–472Google Scholar
  2. Fowler MW (1981) Chem Ind 7: 229–233Google Scholar
  3. Fukui H, Nakagawa K, Tsuda S, Tabata M (1982) in: Fujiwara A (ed) Plant Tissue Culture Tokyo, p 313Google Scholar
  4. Hinz H, Zenk MH (1981) Naturwissenschaften 68: 620–621Google Scholar
  5. Ikram M (1975) Planta Med 28: 353–358Google Scholar
  6. Kondo Y (1976) Heterocycles 4: 197–219Google Scholar
  7. Kumazawa Y, Hagaki A, Fukumoto M, Fujisawa H, Nishimura C, Nomoto K (1984) Int J Immunopharmac 6: 587–592Google Scholar
  8. Murashige T, Skoog F (1962) Physiol Plant 15: 473–497Google Scholar
  9. Rothenberger S (1982) Untersuchungen zur Bildung von Protoberberin-Alkaloiden in Zellkulturen von Berberis wilsonae Hemsl. & Wils. Doctoral Thesis, Universität TübingenGoogle Scholar
  10. Sato F, Endo T, Mashimoto T, Yamada Y (1982) in: Fujiwara E (ed) Plant Tissue Culture Tokyo, p 319Google Scholar
  11. Smart NJ, Fowler MW (1984) J exp Botany 35: 531Google Scholar
  12. Spieler H, Alfermann AW, Reinhard E (1985) Appl Microbiol Biotechnol, in pressGoogle Scholar
  13. Tanaka H (1982) Biotechnol Bioengin 24: 425–442Google Scholar
  14. Ulbrich B, Wiesner W, Arens H (1985) in: Neumann KH, Barz W, Reinhard E, Bender L, Hüsemann W, Alfermann AW (eds) Primary and secondary metabolism in Plant Cell Cultures Springer Berlin Heidelberg New York, in pressGoogle Scholar
  15. Wagner F, Vogelmann H (1977) in: Barz W, Reinhard E, Zenk MH (eds) Plant Tissue Culture and its Bio-technological Application Springer Berlin Heidelberg New York, pp 245–252Google Scholar
  16. Wahl J (1977) Fermentation von pflanzlichen Zellkulturen und 12β-Hydroxylierung von β-Methyldigitoxin durch Zellkulturen von Digitalis lanata. Doctoral Thesis, Universität TübingenGoogle Scholar
  17. Yamada Y, Sato F (1981) Phytochem 20: 545–547Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • M. Breuling
    • 1
  • A. W. Alfermann
    • 1
  • E. Reinhard
    • 1
  1. 1.Pharmazeutisches Institut (Pharmazeutische Biologie)Universität TübingenTübingenFRG

Personalised recommendations