Molecular and General Genetics MGG

, Volume 129, Issue 1, pp 61–75 | Cite as

Ribosomal protein in E. coli: Rate of synthesis and pool size at different growth rates

  • Kirsten Gausing


Relative rates of ribosomal protein synthesis αr was determined by pulsechase labeling of cell protein followed by isolation of ribosomes by electrophoresis of complete lysates on agarose gels. The agarose gel fractionation of lysates is described in detail. Cells growing in acetate, glucose and enriched glucose media had αr values of 0.09, 0.16, and 0.24, respectively. Estimates of the free pool of ribosomal protein were obtained from the kinetics of pulse-chase labeling of ribosomal particles (including precursor particles) and gave maximal values of 1.1, 2.1, and 3.1% of total ribosomal protein at the three different growth rates. The kinetics indicate that the free concentrations in the cell are not the same for all ribosomal proteins.


Fractionation Ribosomal Protein Relative Rate Cell Protein Pool Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adesnik, M., Levinthal, C.: Synthesis and maturation of ribosomal RNA in Escherichia coli. J. molec. Biol. 46, 281–303 (1969)Google Scholar
  2. Bennett, P. M., Maaløe, O.: The effects of fusidic acid on growth, ribosome synthesis and RNA metabolism in Escherichia coli. J. molec. Biol. Submitted (1974)Google Scholar
  3. Bickle, T. A., Howard, G. A., Traut, R. R.: Ribosome heterogeneity. The nonuniform distribution of specific ribosomal proteins among different functional classes of ribosomes. J. biol. Chem. 248, 4862–4864 (1973)Google Scholar
  4. Burgess, R. R.: Separation and characterization of the subunits of ribonucleic acid polymerase. J. biol. Chem. 244, 6168–6176 (1969)Google Scholar
  5. Clark, D. J., Maaløe, O.: DNA replication and the division cycle in Escherichia coli. J. molec. Biol. 23, 99–112 (1967)Google Scholar
  6. Dahlberg, A. E., Dingman, C. W., Peacock, A. C.: Electrophoretic characterization of bacterial polyribosomes in agarose-acrylamide composite gels. J. molec. Biol. 41, 139–147 (1969)Google Scholar
  7. Dahlberg, A. E., Peacock, A. C.: Studies of 16 and 23S ribosomal RNA of Escherichia coli using composite gel electrophoresis. J. molec. Biol. 55, 61–74 (1971)Google Scholar
  8. Dennis, P. P., Bremer, H.: The differential rate of ribosomal protein synthesis in Escherichia coli B/r. J. molec. Biol. Submitted (1974)Google Scholar
  9. Deusser, E.: Heterogeneity of ribosomal populations in Escherichia coli cells grown in different media. Molec. gen. Genet. 119, 249–258 (1972)Google Scholar
  10. Duin, J. van, Knippenberg, P. H. van., Dieben, M., Kurland, C. G.: Functional heterogeneity of the 30S ribosomal subunit of Escherichia coli. II. Effect of S21 on initiation. Molec. gen. Genet. 116, 181–191 (1972)Google Scholar
  11. Duin, J. van, Kurland, C. G.: Functional heterogeneity of the 30S ribosomal subunit of E. coli. Molec. gen. Genet. 109, 169–176 (1970)Google Scholar
  12. Fairbanks, C., Jr., Levinthal, C., Reeder, R. H.: Analysis of 14C-labeled proteins by disc electrophoresis. Biochem. biophys. Res. Commun. 20, 393–399 (1965)Google Scholar
  13. Forchhammer, J., Lindahl, L.: Growth rate of polypeptide chains as a function of the cell growth rate in a mutant of Escherichia coli 15. J. molec. Biol. 55, 563–568 (1971)Google Scholar
  14. Gausing, K.: Efficiency of protein and messenger RNA synthesis in bacteriophage T4-infected cells of Escherichia coli. J. molec. Biol. 71, 529–545 (1972)Google Scholar
  15. Gierer, L., Gierer, A.: Synthesis of ribosomal proteins and formation of ribosomes in Escherichia coli. J. molec. Biol. 34, 293–303 (1968)Google Scholar
  16. Gupta, R. S., Singh, U. N.: Biogenesis of ribosomes: Free ribosomal protein pools in Escherichia coli. J. molec. Biol. 69, 279–301 (1972)Google Scholar
  17. Hardy, S. J. S., Kurland, C. G., Voynow, P., Mora, G.: The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins. Biochemistry 8, 2897–2905 (1969)Google Scholar
  18. Kurland, C. G., Voynow, P., Hardy, S. J. S., Randall, L., Lutter, L.: Physical and functional heterogeneity of E. coli ribosomes. Cold Spr. Harb. Symp. quant. Biol. 34, 17–24 (1969)Google Scholar
  19. Maaløe, O.: An analysis of bacterial growth. Develop. Biol., Suppl. 3, 33–58 (1969)Google Scholar
  20. Maaløe, O., Kjeldgaard, N. O.: Control of macromolecular synthesis. New York: W. A. Benjamin, Inc. 1966Google Scholar
  21. Marvaldi, J., Pichon, J., Marchis-Mouren, G.: The in vivo order of addition of ribosomal proteins in the course of Escherichia coli 30-S subunit biogenesis. Biochim. biophys. Acta (Amst.) 269, 173–177 (1972)Google Scholar
  22. Mora, G., Donner, D., Thammana, P., Lutter, L., Kurland, C. G.: Purification and characterization of 50S ribosomal proteins of Escherichia coli. Molec. gen. Genet. 112, 229–242 (1971)Google Scholar
  23. Nath, K., Koch, A. L.: Protein degradation in Escherichia coli. I. Measurement of rapidly and slowly decaying components. J. biol. Chem. 245, 2889–2900 (1970)Google Scholar
  24. Nierhaus, K. H., Bordasch, K., Homann, H. E.: Ribosomal proteins. XLIII. In vivo assembly of Escherichia coli ribosomal proteins. J. molec. Biol. 74, 587–597 (1973)Google Scholar
  25. Nomura, M.: Assembly of bacterial ribosomes. Science 179, 864–873 (1973)Google Scholar
  26. Peacock, A. C., Dingman, C. W.: Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry 7, 668–674 (1968)Google Scholar
  27. Pichon, J., Marvaldi, J., Marchis-Mouren, G.: The in vivo order of addition of ribosomal proteins in the course of E. coli 50S subunit biogenesis. Biochem. biophys. Res. Commun. 47, 531–538 (1972)Google Scholar
  28. Raymond, S.: Acrylamide gel electrophoresis. Ann. N.Y. Acad. Sci. 121, 350–365 (1964)Google Scholar
  29. Schleif, R.: Control of production of ribosomal protein. J. molec. Biol. 27, 41–55 (1967)Google Scholar
  30. Schleif, R. F.: Origin of chloramphenicol particle protein. J. molec. Biol. 37, 119–129 (1968)Google Scholar
  31. Sekiguchi, M., Iida, S.: Mutants of Escherichia coli permeable to actinomycin. Proc. nat. Acad. Sci. (Wash.) 58, 2315–2320 (1967)Google Scholar
  32. Sells, B. H., Davis, F. C., Jr.: Biogenesis of 50S particles in exponentially growing Escherichia coli. J. molec. Biol. 47, 155–167 (1970)Google Scholar
  33. Thammana, P., Kurland, C. G., Deusser, E., Weber, J., Maschler, R., Stöffler, G., Wittmann, H. G.: Structural and functional evidence for a repeated 50S subunit ribosomal protein. Nature (Lond.) New Biol. 242, 47–49 (1973)Google Scholar
  34. Tissières, A., Watson, J. D., Schlessinger, D., Hollingworth, B. R.: Ribonucleoprotein particles from Escherichia coli. J. molec. Biol. 1, 221–233 (1959)Google Scholar
  35. Traut, R. R., Delius, H., Ahmad-Zadeh, C., Bickle, T. A., Pearson, P., Tissières, A.: Ribosomal proteins of E. coli: Stoichiometry and implications for ribosome structure. Cold Spr. Harb. Symp. quant. Biol. 34, 25–38 (1969)Google Scholar
  36. Voynow, P., Kurland, C. G.: Stoichiometry of the 30S ribosomal proteins of Escherichia coli. Biochemistry 10, 517–524 (1971)Google Scholar
  37. Waller, J.-P.: The NH2-terminal residues of the proteins from cell-free extracts of E. coli. J. molec. Biol. 7, 483–496 (1963).Google Scholar
  38. Weber, H. J.: Stoichiometric measurements of 30S and 50S ribosomal proteins from Escherichia coli. Molec. gen. Genet. 119, 233–248 (1972)Google Scholar
  39. Zimmermann, R. A., Muto, A., Fellner, P., Ehresmann, C., Branlant, C.: Location of ribosomal protein binding sites on 16S ribosomal RNA. Proc. nat. Acad. Sci. (Wash.) 69, 1282–1286 (1972)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Kirsten Gausing
    • 1
  1. 1.University Institute of MicrobiologyCopenhagenDenmark

Personalised recommendations