Plant Cell Reports

, Volume 8, Issue 8, pp 479–482 | Cite as

Comparison of secondary product accumulation in photoautotrophic, photomixotrophic and heterotrophic Nicotiana tabacum cell suspension cultures

  • D. Ikemeyer
  • W. Barz


Photoautotrophic, photomixotrophic and heterotrophic Nicotiana tabacum cell suspension cultures were compared for the constitutive accumulation of secondary metabolites and the elicitor-induced formation of the phytoalexin capsidiol. Nicotine and chlorogenic acid were found in high amounts in the heterotrophic cultures and in moderate concentrations in photomixotrophic but not in photoautotrophic cells. Nicotinic acid-N-glucoside occured in all culture types; in photoautotrophic and photomixotrophic cells the formation of N-methylnicotinic acid (trigonelline) was also observed. Treatment with a fungal elicitor led to substantial accumulation of capsidiol in heterotrophic and photomixotrophic cells and in only low levels in photoautotrophic cultures. Elicitor-treated photomixotrophic cells showed a pronounced increase in cell wall-bound phenolics. The levels of nicotine, nicotinic acid-N-glucoside and trigonelline were not affected by elicitation.

Key words

Nicotiana tabacum cell suspension culture nicotine chlorogenic acid nicotinic acid conjugates elicitation photoautotrophy 



heterotrophic cell culture


photomixotrophic cell culture


photoautotrophic cell culture




nicotinic acid-N-glucoside


Phytophthora megasperma f. sp. glycínea


high performance liquid chromatography


gas chromatography


thin layer chromatography


2,4-dichlorophenoxyacetic acid






α-naphthylacetic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayers A R, Ebel J, Valant B, Albersheim P (1976) Plant Physiol 57: 760–765Google Scholar
  2. Bailey J A, Mansfield J W (1982) Phytoalexins. Blackie & Son, GlasgowGoogle Scholar
  3. Barz W (1985) In: Neumann K H, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin Heidelberg New York Tokyo, pp 186–195Google Scholar
  4. Barz W (1988) Bioengineering 4: 145–148Google Scholar
  5. Barz W, Daniel S, Hinderer W, Jaques U, Keßmann H, Köster H, Otto Ch, Tiemann K (1988) In: Application of plant cell and tissue culture (CIBA foundation Nr. 137), John Wiley&Sons, New YorkGoogle Scholar
  6. Barz W, Ellis B E (1981) Ber. Deutsch. Bot. Ges. Bd. 94: 1–26Google Scholar
  7. Berlin J (1981) Phytochemistry 20: 53–55Google Scholar
  8. Bowell G P, Robbins M P, Dixon R A (1985) Eur J Biochem 148: 571–578Google Scholar
  9. Brammall R A, Higgens U J (1988) Can J Bot 66: 1547–1555Google Scholar
  10. Brindle P A, Kuhn P J, Threlfall D R (1988) Phytochemistry 27: 133–150Google Scholar
  11. Green C E, Somers D A, Hackett W P, Biesboer D D (1987) Plant tissue and cell culture vol 3. Alan R Liss Inc, New YorkGoogle Scholar
  12. Hobbs M C (1988) Doctoral thesis, University of EdinburghGoogle Scholar
  13. Hüsemann W (1985) In: Vasil I (ed) Cell cultures and somatic cell - genetics of plants, vol 2, Academic Press Inc, Orlanda, USA, pp 213–247Google Scholar
  14. Hüsemann W, Barz W (1977) Physiol Plant 40: 77–81Google Scholar
  15. Hüsemann W, Fischer K, Mittelbach I, Hübner S, Richter G, Barz W (1989) In: Kurz W G W (ed) Primary and secondary metabolism of plant cell cultures II, Springer, Berlin Heidelberg New York Tokyo, pp 35–46Google Scholar
  16. Igbavboa U, Sieweke H J, Leistner E, Röwer I, Hüsemann W, Barz W (1985) Planta 166: 537–544Google Scholar
  17. Ikemeyer D (1989) Diplomarbeit, Münster UniversityGoogle Scholar
  18. Kolossa E, Deus-Neumann B, Zenk M H (1987) Planta medica 53: 449–456Google Scholar
  19. Köster S, Upmeier B, Komoβa D, Barz W (1989) Z. Naturforsch, in pressGoogle Scholar
  20. Linskens H J, Jackson J F (1987) High performance liquid chromatography in plant science. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  21. Mothes K, Schütte H R, Luckner M (1985) Biochemistry of alkaloids, VCH WeinheimGoogle Scholar
  22. Murashige T, Skoog F (1962) Physiol Plant 15: 473–497Google Scholar
  23. Röper W, Schulz M, Chaouiche E, Meloh K A (1985) J Plant Physiol 118: 463–470Google Scholar
  24. Scheel D, Keller H, Hahlbrock K (1989) In: Dutch-german workshop, Secondary plant production in vitro cultures, University Wageningen Netherlands, abstrcat, pp 12Google Scholar
  25. Stoessl A, Stothers J B, Ward E W B (1976) Phytochemistry 15: 855–872Google Scholar
  26. Strack D, Ruhoff R, Gräwe W (1986) Phytochemistry 25: 833–837Google Scholar
  27. Tabata M, Ogino T, Yoshioka K, Yoshikawa N, Hiraoka N (1978) In: Thorpe T A (ed) Frontiers of plant tissue culture 1978, Department of Biology, Calgary, Alberta, Canada, pp 213–222Google Scholar
  28. Tanaka H, Fujimori T (1985) Phytochemistry 24: 1193–1195Google Scholar
  29. Threlfall D R, Whitehead I M (1988) Phytochemistry 27: 2567–2580Google Scholar
  30. Towers G H N, Yamamoto E (1985) Annu Proc Phytochem Soc Europe 25: 271–287Google Scholar
  31. Uegaki R, Kubo S, Fujimori T (1988) Phytochemistry 27: 2445–2447Google Scholar
  32. Upmeier B, Köster S, Otto Ch, Barz W (1988a) In: Pais M S S (ed) Nato ASI series, vol 18, Plant cell biotechnology, Springer Berlin Heidelberg New York, pp 239–244Google Scholar
  33. Upmeier B, Thomzik J E, Barz W (1988b) Phytochemistry 27: 3489–3493Google Scholar
  34. Upmeier B, Thomzik J E, Barz W (1988c) Z. Naturforsch 43c: 835–842Google Scholar
  35. Upmeier B, Gross W, Köster S, Barz W (1988d) Arch Biochem Biophys 262: 445–454Google Scholar
  36. Watson D G, Rycroft D S, Freer I M, Brooks Ch J W (1985) Phytochemistry 24: 2195–2200Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • D. Ikemeyer
    • 1
  • W. Barz
    • 1
  1. 1.Lehrstuhl Biochemie der PflanzenWestfälische Wilhelms-UniversitätMünsterFederal Republic of Germany

Personalised recommendations