Advertisement

Molecular and General Genetics MGG

, Volume 140, Issue 1, pp 51–60 | Cite as

Parameters of gene expression in the bipolar argECBH operon of E. coli K12

The question of translational control
  • Raymond Cunin
  • Anne Boyen
  • Peter Pouwels
  • Nicolas Glansdorff
  • Marjolaine Crabeel
Article

Summary

The pattern of divergent transcription of the argECBH cluster of genes previously demonstrated by the hybridization of RNA to the separated strand of a ϕ80 drag transducing phage, is confirmed with the DNA of a set of different λdarg phages.

The accurate determination of argE and argCBH m-RNA levels in different steady states of expression of the arg regulon supports the following conclusions:

  1. 1.

    The ratio between maximal (derepressed) and minimal (repressed) rates of expression is lower when it is expressed in terms of % hybridizable RNA than in terms of enzyme specific activities. The discrepancy is about 3 fold. Thus in conditions of repression, the cell produces relatively more unused m-RNA than in derepression. Different interpretations of this phenomenon appear possible:

     
  1. a)

    the messenger RNA molecules synthesized in repressed cells could be degraded more rapidly or translated less efficiently than in derepressed cells.

     
  2. b)

    an untranslated segment of the RNA could account for a larger part of the RNA detected in repression than in derepression. These interpretations are not mutually exclusive.

     
  3. 2.

    The discrepancy observed between the amplitudes of variation of argE and argCBH expression, expressed in terms of enzyme specific activities, is, in fact, determined at the level of DNA transcription. This provides direct evidence for the occurrence of differential transcription effectiveness in a regulon exhibiting a correlative but not strictly coordinated pattern of enzyme synthesis. This also supports our earlier suggestion regarding the possible complexity of the internal operator region situated between argE and C.

     

Keywords

Accurate Determination Regulon Enzyme Synthesis Operator Region Internal Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachman, B. J.: Pedigree of some mutant strains of Escherichia coli K 12. Bact. Rev. 26, 525–557 (1972)Google Scholar
  2. Baumberg, S.: Genetic control of arginine metabolism in prokaryotes. Symposium on Genetics of Industrial Microoragnisms, Sheffield, 1975. New York: Academic Press (in press)Google Scholar
  3. Beeftinck, F., Cunin, R., Glansdorff, N.: Arginine gene duplication in recombination proficient and deficient strains of Escherichia coli K 12. Molec. gen. Genet. 132, 244–253 (1974)Google Scholar
  4. Boy, E., Theze, J., Patte, J.-C.: Transient regulation of enzyme synthesis in Escherichia coli. Molec. gen. Genet. 121, 77–78 (1973)Google Scholar
  5. Boyen, A., Cunin, R., Glansdorff, N.: Messenger RNA levels from the bipolar arginine ECBH operon of Escherichia coli. Arch. Intern. Physiol. Biochim. 82, 968–969 (1974)Google Scholar
  6. Crabeel, M., Charlier, D., Boyen, A., Cunin, R., Glansdorff, N.: Mutants selection in the control region of the argECBH bipolar operon of Escherichia coli. Arch. intern. Physiol. Biochim. 82, 973–974 (1974)Google Scholar
  7. Cunin, R., Elseviers, D., Sand, G., Freundlich, G., Glansdorff, N.: On the functional organization of the argECBH cluster of genes in Escherichia coli K 12. Molec. gen. Genet. 106, 32–47 (1969)Google Scholar
  8. Cunin, R., Glansdorff, N.: Messenger RNA from arginine and phosphoenolpyruvate carboxylase genes in argR + and argR strains of Escherichia coli K 12. FEBS Letters 18, 135–137 (1971)Google Scholar
  9. Elseviers, D., Cunin, R., Glansdorff, N., Baumberg, S., Ashcroft, E.: Control region within the argECBH gene cluster of Escherichia coli K 12. Molec. gen. Genet. 117, 349–366 (1972)Google Scholar
  10. Hall, B. G., Gallant, J. A.: On the rate of messenger decay during amino acid starvation. J. molec. Biol. 73, 121–124 (1973)Google Scholar
  11. Jacoby, G. A.: Control of the argECBH cluster in Escherichia coli. Molec. gen. Genet. 117, 337–348 (1972)Google Scholar
  12. Lavallé, R.: Regulation at the level of translation in the arginine pathway of Escherichia coli K 12. J. molec. Biol. 51, 449–451 (1970)Google Scholar
  13. Lavallé, R., De Hauwer, G.: Tryptophan messenger translation in Escherichia coli. J. molec. Biol. 51, 435–447 (1970)Google Scholar
  14. McLellan, W., Vogel, H. J.: Translation repression in the arginine system of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 67, 1703 (1970)Google Scholar
  15. McLellan, W., Vogel, H. J.: Stability of argECBH messenger RNA under arginine excess or restriction. Biochem. biophys. Res. Commun. 55, 1385–1389 (1973)Google Scholar
  16. Ohtsubo, E., Lee, H. J., Deonier, R. C., Davidson, N.: Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. VI. Mapping of F14 sequences homologous to ϕ80 d met BJF and ϕ80 dargECBH bacteriophages. J. molec. Biol. 89, 599–618 (1974)Google Scholar
  17. Panchal, C. J., Bagchee, S. N., Guha, A.: Divergent orientation of transcription from the arginine gene ECBH cluster of Escherichia coli. J. Bact. 117, 675–680 (1974)Google Scholar
  18. Pannekoek, H., Cunin, R., Boyen, A., Glansdorff, N.: In vitro transcription of the bipolar arginine ECBH operon of Escherichia coli K 12. FEBS Letters 51, 143–145 (1975)Google Scholar
  19. Piérard, A., Glansdorff, N., Mergeay, M., Wiame, J.-M.: Control of the biosynthesis of carbamoylphosphate in Escherichia coli. J. molec. Biol. 14, 23–26 (1965)Google Scholar
  20. Pouwels, P., Cunin, R., Glansdorff, N.: Divergent transcription in the argECBH cluster of genes in Escherichia coli K 12. J. molec. Biol. 83, 421–424 (1974)Google Scholar
  21. Rogers, P., Arfman, E., Krzyzek, R., Kaden, T. M.: Effect of arginine and canavanine on arginine messenger RNA synthesis. Biochem. biophys. Res. Commun. 44, 1220–1226 (1971)Google Scholar
  22. Shimada, K., Weisberg, R. A., Gottesman, M. E.: Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. J. molec. Biol. 63, 483–503 (1972)Google Scholar
  23. Stubbs, J. D., Hall, B. D.: Level of tryptophan messenger RNA in Escherichia coli. J. molec. Biol. 37, 289–302 (1968)Google Scholar
  24. Taylor, A. L., Trotter, C. D.: Linkage map of Escherichia coli strain K 12. Bact. Rev. 36, 504–524 (1972)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Raymond Cunin
    • 1
    • 2
  • Anne Boyen
    • 1
    • 2
  • Peter Pouwels
    • 1
    • 2
    • 3
  • Nicolas Glansdorff
    • 1
    • 2
  • Marjolaine Crabeel
    • 1
    • 2
  1. 1.Laboratorium voor Erfelijkheidsleer en MikrobiologieVrije Universiteit BrusselBrusselsBelgium
  2. 2.OnderzoekingsinstituutC.O.O.V.I.BrusselsBelgium
  3. 3.Medison Biologisch LaboratoriumTNORijswijkThe Netherlands

Personalised recommendations