Advertisement

Molecular and General Genetics MGG

, Volume 140, Issue 1, pp 29–37 | Cite as

Rec-mediated recombinational hot spot activity in bacteriophage λ

IV. Effect of heterology on Chi-stimulated crossing over
  • Franklin W. Stahl
  • Mary M. Stahl
Article

Summary

A Chi mutation in phage λ stimulates Rec-mediated crossing over more to one side of itself than to the other; stimulation, which is maximal near Chi, can occur at some distance from the Chi site as well. A gross heterology differentiating the two recombining parents does not interfere with the distant Chi-stimulated crossover whether the heterology is at the Chi site or between the Chi site and the distant interval in which recombination is monitored. These conclusions hold whether recombination is measured “genetically” in standard crosses or “physically” in density-labeled crosses conducted in the absence of DNA replication.

Keywords

Recombination Distant Interval Spot Activity Standard Cross 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doniger, J., Warner, R. C., Tessman, I.: Role of circular dimer DNA in the primary recombination mechanism of bacteriophage S13. Nature (Lond.) New Biol. 242, 9–12 (1973)Google Scholar
  2. Goldman, S. L.: Studies on the mechanism of the induction of site-specific recombination in the ade-6 locus of Schizosaccharomyces pombe. Molec. gen. Genet. 132, 347–361 (1974)Google Scholar
  3. Gordon, C. N., Rush, M. G., Warner, R. C.: Complex replicative form molecules of bacteriophages ϕX174 and S13 su105. J. molec. Biol. 47, 495–503 (1970)Google Scholar
  4. Gottesman, M., Yarmolinsky, M.: Integration-negative mutants of bacteriophage lambda. J. molec. Biol. 31, 487–505 (1968)Google Scholar
  5. Gutz, H.: Site specific induction of gene conversion in Schizosaccharomyces pombe. Genetics 69, 317–337 (1971)Google Scholar
  6. Herman, R. K.: Reciprocal recombination of chromosome and F-merogenote in Escherichia coli. J. Bact. 90, 1664–1668 (1965)Google Scholar
  7. Holliday, R.: A mechanism for gene conversion in fungi. Genet. Res. Camb. 5, 282–304 (1964)Google Scholar
  8. Horiuchi, K., Zinder, N. D.: Cleavage of bacteriophage f1 DNA by the restriction enzyme of Escherichia coli B. Proc. nat. Acad. Sci. (Wash.) 69, 3220–3224 (1972)Google Scholar
  9. Lam, S. T., Stahl, M. M., McMilin, K. D., Stahl, F. W.: Rec-mediated recombinational hot spot activity in bacteriophage lambda. II. A mutation which causes hot spot activity. Genetics 77, 425–433 (1974)Google Scholar
  10. McMilin, K. D., Stahl, M. M., Stahl, F. W.: Rec-mediated recombinational hot spot activity in bacteriophage lambda. I. Hot spot activity associated Spi- deletions and bio substitutions. Genetics 77, 409–423 (1974)Google Scholar
  11. Meselson, M. S.: Reciprocal recombination in prophage lambda. J. cell. Physiol. 70, Suppl. 1, 113–118 (1967)Google Scholar
  12. Meselson, M. S.: Formation of hybrid DNA by rotary diffusion during genetic recombination. J. molec. Biol. 71, 795–798 (1972)Google Scholar
  13. Oka, A., Ozeki, H., Ikeda, H., Ikeda, N., Tomizawa, J.: The formation of polymer genomes of coliphage lambda in multiply infected cells. Virology 59, 455–466 (1974)Google Scholar
  14. Parkinson, J. S.: Genetics of the left arm of the chromosome of bacteriophage lambda. Genetics 59, 311–325 (1968)Google Scholar
  15. Rupp, W. D., Wilde, C. E., Reno, D. L., Howard-Flanders, P.: Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J. molec. Biol. 61, 25–44 (1971)Google Scholar
  16. Sigal, N., Alberts, B.: Genetic recombination: the nature of a crossed strand-exchange between two homologous DNA molecules. J. molec. Biol. 71, 789–793 (1972)Google Scholar
  17. Stahl, F. W., Chung, S., Crasemann, J., Faulds, D., Haemer, J., Lam, S., Malone, R. E., McMilin, K. D., Nozu, Y., Siegel, J., Strathern, J., Stahl, M.: Recombination, replication and maturation in phage lambda. In: Virus Research (C. F. Fox and W. S. Robinson, eds.), p. 487–503. New York: Academic Press 1973Google Scholar
  18. Stahl, F. W., Crasemann, J. M., Stahl, M. M.: Rec-mediated recombinational hot spot activity in bacteriophage λ. III. Chi mutations are site-mutations stimulating Recmediated recombination. J. molec. Biol. 94, 203–212 (1975)Google Scholar
  19. Stahl, F. W., McMilin, K. D., Stahl, M. M., Crasemann, J. M., Lam, S.: The distribution of crossovers along unreplicated lambda bacteriophage chromosomes. Genetics 77, 395–408 (1974)Google Scholar
  20. Stahl, F. W., McMilin, K. D., Stahl, M. M., Nozu, Y.: An enhancing role for DNA synthesis in formation of bacteriophage lambda recombinants. Proc. nat. Acad. Sci. (Wash.) 69, 3598–3601 (1972)Google Scholar
  21. Szybalski, W., Herskowitz, I.: Lambda genetic elements. In: The Bacteriophage Lambda (A. D. Hershey, ed.), p. 778–779. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory 1971Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Franklin W. Stahl
    • 1
  • Mary M. Stahl
    • 1
  1. 1.Institute of Molecular BiologyUniversity of OregonEugene

Personalised recommendations