Acta Informatica

, Volume 25, Issue 1, pp 15–36 | Cite as

Fifo nets without order deadlock

  • Alain Finkel
  • Annie Choquet


We introduce a generalisation of free choice nets to fifo. These fifo nets are free from deadlocks caused by the order of messages in fifo queues. We describe some tools for their analysis, using the fact that they are weakly monotonous, and that there is a narrow relation between their languages and those of the associated coloured nets. Therefore, quasi-liveness, finite termination and liveness are decidable properties.


Free Choice Firing Sequence Input Alphabet Causality Graph Fifo Queue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Best, E., Fernandez, C.: Notations and terminology on Petri nets. Arbeitspapiere der GMD 195, 1986Google Scholar
  2. 2.
    Choquet, A., Finkel, A.: Applications of residues for the analysis of parallel systems communicating by fifo channels. LRI Repport no. 278, Univ. Paris Sud, Orsay, May 1986Google Scholar
  3. 3.
    Commoner, F.: Deadlock in Petri nets. Applied Data Research Inc., Wakefield Mass CA, pp. 7206–2311, 1972Google Scholar
  4. 4.
    Finkel, A.: Deux classes de réseaux à files: les réseaux monogènes et les réseaux préfixes. Thèse de 3ème cycle, LITP Repport no. 83-3, 1982Google Scholar
  5. 5.
    Finkel, A.: Boundeness and liveness for monogeneous fifo nets and for free choice fifo nets — Application to analysis of protocols. LRI Repport no. 205, 1985Google Scholar
  6. 6.
    Finkel, A.: Structuration des systèmes de transitions: applications au contrôle du parallélisme par files fifo. Thèse d'Etat, Université Paris Sud, 1986Google Scholar
  7. 7.
    Flé, M., Roucairol, G.: Fair serializability of iterated transactions using fifo-nets. Advances in Petri nets. In: Lecture Notes of Computer Science, Vol. 188. Rozenberg, G. (ed.), pp. 154–168. Berlin, Heidelberg, New York, Tokyo: Springer 1985Google Scholar
  8. 8.
    Hack, M.: Analysis of production schemata by Petri nets. M.S. Thesis, Dept. Elect. Eng. M.I.T. Camb. Mass. Proj. MAC.MAC.TR 94 (September 1972)Google Scholar
  9. 9.
    Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 2 (1952)Google Scholar
  10. 10.
    Jensen, K.: High-level Petri nets. Advanced course on Petri nets, Bad Honnef, 1986Google Scholar
  11. 11.
    Kahn, G., Mac Quenn, D.: Coroutines and networks of parallel processes. In: IFIP 77 Inf. Proc. Conf. 1977Google Scholar
  12. 12.
    Kosaraju, S.R.: Decidability of reachability in vector addition systems. In: Proc. 14th Ann. ACM Symp. Theory Comput. 1982Google Scholar
  13. 13.
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: SIAM J. Comput. 13, 441–460 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Memmi, G., Finkel, A.: An introduction to fifo nets — monogeneous nets: a subclass of fifo nets. T.C.S. 35, 191–214 (1985)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Valk, R., Jantzen, M.: The residues of vector sets with applications to decidability problem in Petri nets. Acta Inf. 21, 643–674 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Vauquelin, B., Franchi-Zannettaci, P.: Automates à files. T.C.S. 11, 221–225 (1980)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Alain Finkel
    • 1
  • Annie Choquet
    • 1
  1. 1.Université de Paris sudOrsay CedexFrance

Personalised recommendations