Molecular and General Genetics MGG

, Volume 173, Issue 3, pp 263–269 | Cite as

Arginine catabolism: A new function of both octopine and nopaline Ti-plasmids of Agrobacterium

  • Jeffrey G. Ellis
  • Allen Kerr
  • Jacques Tempé
  • Annik Petit


The oncogenic plasmids of Agrobacterium, the Ti-plasmids, carry genes that enable their bacterial host to catabolize opines. Opines are unusual amino acid derivatives that are only produced in crown gall tumours incited by oncogenic strains of Agrobacterium. The 2 opines, octopine and nopaline, are degraded by Agrobacterium strains carrying the octopine or the nopoline Ti-plasmid, respectively, to arginine and pyruvic acid, and to arginine and α-ketoglutaric acid. In this paper it is shown that the Ti-plasmids carry gene(s) involved in the utilisation of arginine as a carbon source. Strains harbouring wild type octopine or nopaline Ti-plasmids in the chromosomal context of strain C58C1 do not grow on arginine as a carbon source. However, they are able to grow on arginine provided that they are induced, or constitutive for opine catabolism. The features of ornithine utilisation are identical. The gene(s) involved in arginine and ornithine utilization in C58C1 (pTi-oct) or C58C1 (pTi-nop) are under the control of the regulator gene that controls octopine or nopaline catabolism. A tentative pathway of octopine utilization is proposed, in which at least two steps are Ti-plasmid coded, and probably belong to the same operon: 1-scission of octopine into arginine and pyruvic acid 2-transformation of an arginine derivative (GSA?) to glutamic acid.

Arginine utilization as a carbon source is therefore a new function of the Ti-plasmid. As this function is not inducible by arginine but by opines, it provides a method for selecting regulatory mutants of opine catabolism in the genetic background of strain C58.


Arginine Ornithine Agrobacterium Pyruvic Acid Amino Acid Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belgian Crown Gall Research Group: Interaction and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host. Proc. R. Soc. Lond. B. 204, 251–266 (1978)Google Scholar
  2. Bomhoff, G.H.: Studies on crown-gall—a plant tumor. Investigations on protein composition and on the use of guanidines compounds as a marker for transformed cells. Thesis, The University of Leyden, N.L. (1974)Google Scholar
  3. Bomhoff, G.H., Klapwijk, P.M., Kester, H.C., Schilperoort, R.A., Hernalsteens, J.P., Schell, J.: Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens. Mol. Gen. Genet. 145, 171–181 (1976)Google Scholar
  4. Broman, K., Lauwers, N., Stalon, V., Wiame, J-M.: Oxygen and nitrate in utilization by Bacillus licheninformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their synthesis. J. Bacteriol. 135, 920–927 (1978)Google Scholar
  5. Chilton, M.D., Drummond, M.H., Merlo, D.J., Sciaky, D., Montoya, A., Gordon, M.P., Nester, E.W.: Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11, 263–271 (1977)Google Scholar
  6. Chilton, M.D., Farrand, S.K., Levin, R., Nester, E.W.: RP4 promotion of transfer of a large Agrobacterium plasmid which confers virulence. Genetics 83, 609–618 (1976)Google Scholar
  7. Dendinger, S., Brill, W.J.: Regulation of proline degradation in Salmonelle typhimurium. J. Bacteriol. 103, 144–152 (1970)Google Scholar
  8. Goldmann-Ménagé, A.: Recherches sur le métabolisme azoté des tissus de crown-gall cultivés in vitro. Ann. Sci. Natur. Bot. 12eme Sér. Paris 11, 223–310 (1971)Google Scholar
  9. Hanwer, G. de, Lavallé, R., Wiame, J-M.: Etude de la pyrroline déshydrogénase et de la régulation du catabolisme de l'arginine et de la proline chez Bacillus subtilis. Biochim. Biophys. Acta 81, 257–269 (1964)Google Scholar
  10. Holderbach, E., Beiderbeck, R.: Octopingehalt in Normal und Tumorgeweben einige höherer Pflanzen.Phytochem. 15, 955–956 (1976)Google Scholar
  11. Kemp, J. D.: Octopine as a marker for the induction of tumorous growth by Agrobacterium tumefaciensstrain B6. Biochem. Biophys. Res. Commun. 69, 816–822 (1976)Google Scholar
  12. Kemp, J.D.: A new amino acid derivative present in crown gall tumor tissue. Biochem. Biophys. Res. Commun. 74, 862–868 (1977)Google Scholar
  13. Kerr, A., Manigault, P., Tempé, J.: Transfer of virulence in vivo and in vitro in Agrobacterium. Nature 265, 560–561 (1977)Google Scholar
  14. Kerr, A., Roberts, W.P.: Agrobacterium: Correlation between and transfer of pathogenicity, octopine and nopaline metabolism and bacteriocin 84 sensitivity. Physiol. Plant. Pathol. 9, 205–211 (1976)Google Scholar
  15. Larebeke, N. van, Engler, G., Holsters, M., van den Elsacker, S., Zaenen, I., Schilperoort, R.A., Schell, J.: Large plasmid in Agrobacterium tumefaciens essential for crown-gall inducing ability. Nature 252, 169–170 (1974)Google Scholar
  16. Larebeke, N. van, Genetello, C., Schell, J., Schilperoort, R.A., Hermans, A.K., Hernalsteens, J.P.: Acquisition of tumor inducing ability by non oncogenic Agrobacteriaas a result of plasmid transfer. Nature 255, 742–743 (1975)Google Scholar
  17. Miller, D.L., Rodwell, V.W.: Metabolism of basic amino acids in Pseudomonas putida. Properties of the inducible lysine transport system. J. Biol. Chem. 246, 1765–1771 (1971)Google Scholar
  18. Montoya, A., Chilton, M.D., Gordon, M.P., Sciaky, D., Nester, E.W.: Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown-gall tumor cells: role of plasmid genes. J. Bacteriol. 129, 101–107 (1977)Google Scholar
  19. Petit, A., Delhaye, S., Tempé, J., Morel, G.: Recherches sur les guanidines des tissus de crown-gall. Mise en évidence d'une relation biochimique spécifique entre les souches d'Agrobacterium tumefaciens et les tumcurs qu'elles induisent. Physiol. Vég. 8, 205–213 (1970)Google Scholar
  20. Petit, A., Dessaux, Y., Tempé, J.: The biological significance of opines: I. A study of opine catabolism by Agrobacterium tumefaciens. In: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria(M. Ridé, ed.), Angers, 143–152 (1979)Google Scholar
  21. Petit, A., Tempé, J.: Etude du métabolisme des guanidines des tissus de crown-gall par la souche T37 d'Agrobacterium tumefaciens. C.R. Acad. Sci. Paris. 281, 467–469 (1975)Google Scholar
  22. Petit, A., Tempé, J.: Isolation ofAgrobacterium Ti-plasmid regulatory mutants. Mol. Gen. Genet. 167, 147–155 (1978)Google Scholar
  23. Petit, A., Tempé, J., Kerr, A., Holsters, M., van Montagu, M., Schell, J.: Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature 271, 570–572 (1978)Google Scholar
  24. Speranza, A., Bagni, N.: Putrescine biosynthesis in Agrobacterium tumefaciens and in normal and crown gall tissue of Scorzonera hispanica. Z. Pflanzenphysiol. 81, 226–233 (1977)Google Scholar
  25. Watson, B., Currier, T.C., Gordon, M.P., Chilton, M.D., Nester, E.W.: Plasmid required for virulence of Agrobacterium tumefaciens. J. Bacteriol. 123, 255–264 (1975)Google Scholar
  26. Wu, L., Unger, L.: Utilization of octopine by Agrobacterium tumefaciens. Book of abstracts. Noodwijkerhout, NL: Embo Workshop on Plant tumour research 1978Google Scholar
  27. Zaenen, I., van Larebeke, N., Teuchy, H., van Montagu, M., Schell, J.: Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J. Mol. Biol. 86, 109–127 (1974)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Jeffrey G. Ellis
    • 1
  • Allen Kerr
    • 1
  • Jacques Tempé
    • 2
  • Annik Petit
    • 2
  1. 1.Watte Agricultural Research InstituteGlen Osmond
  2. 2.Station de Génétique et d'Amélioration des PlantesINRAVersaillesFrance

Personalised recommendations