Molecular and General Genetics MGG

, Volume 135, Issue 3, pp 231–243 | Cite as

Synthesis of ribosomal proteins during sea urchin early embryonic development

  • Mindaugas S. Kaulenas
  • Brian R. Unsworth


A low level of general ribosomal protein synthesis occurs during embryonic cleavage of Strongylocentrotus purpuratus. Wide differences in specific activities indicate that the synthesis or turnover of individual ribosomal proteins occurs at different rates and is not coordinated with respect to each other. In general, proteins with the greatest specific radioactivities are those in the higher molecular weight range. Experiments with actinomycin D indicate that the production of most of the ribosomal proteins is not coordinated with that of rRNA, and probably occurs on maternal mRNAs.

A comparison of early and late cleavage stages shows an overall similarity in labelling patterns, although some differences in specific activities are detectable.

Control experiments show that newly formed proteins cannot be removed from ribosomes by washing in 1M salt. A number of possible sources of artifacts, including the occurence of nascent peptide-associated proteins, artifactual complexes between ribosomes and soluble proteins as well as bacterial contamination, have been ruled out.

The results support a dynamic model for ribosome structure with respect to at least some of the protein constituents.


Ribosomal Protein Actinomycin Specific Radioactivity Labelling Pattern Cleavage Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelman, T. C., Lovett, J. J.: Synthesis of ribosomal protein without de novo ribosome production during differentiation in Blastocladiella emersonii. Biochem. biophys. Res. Commun. 49, 1174–1182 (1972)CrossRefGoogle Scholar
  2. Bickle, T. A., Traut, R. R.: Differences in size and number of 8OS and 7OS ribosomal proteins by dodecyl sulfate gel electrophoresis. J. biol. Chem. 246, 6828–6834 (1971)PubMedGoogle Scholar
  3. Bickle, T. A., Howard, G. A., Traut, R. R.: Ribosome heterogeneity. The nonuniform distribution of specific ribosomal proteins among different functional classes of ribosomes. J. biol. Chem. 248, 4862–4864 (1973)PubMedGoogle Scholar
  4. Blobel, G.: Release, identification and isolation of messenger RNA from mammalian ribosomes. Proc. nat. Acad. Sci. (Wash.) 68, 832–835 (1971)CrossRefGoogle Scholar
  5. Brachet, J., O'Dell, D., Steinert, G., Tencer, R.: Cleavage nucleoli and ribosomal RNA synthesis in sea urchin eggs. Exp. Cell. Res. 73, 463–468 (1972)CrossRefGoogle Scholar
  6. Brown, D. D.: The genes for ribosomal RNA and their transcription during amphibian development. Curr. Top. Dev. Biol. 2, 47–73 (1967)CrossRefGoogle Scholar
  7. Craig, N. C.: On the regulation of the synthesis of ribosomal proteins in L-cells. J. molec. Biol. 55, 129–134 (1971)CrossRefGoogle Scholar
  8. Deusser, E., Weber, H. J., Subramanian, A. R.: Variations in stochiometry of ribosomal proteins in Escherichia coli. J. molec. Biol. 84, 249–256 (1974)CrossRefGoogle Scholar
  9. DeWitt, W., Price, R. P.: Structural changes in ribosomes during development. Biochem. biophys. Res. Commun. 56, 593–598 (1974)CrossRefGoogle Scholar
  10. Dice, F. J., Schimke, R.: Turnover and exchange of ribosomal proteins from rat liver. J. biol. Chem. 247, 98–111 (1972)PubMedGoogle Scholar
  11. Ellis, C. A.: The genetic control of sea urchin development: A chromatographic study of protein synthesis in the Arbacia punctulata embryo. J. exp. Zool. 163, 1–12 (1966)CrossRefGoogle Scholar
  12. Emerson, C. P., Humphreys, T.: Regulation of DNA-like RNA and the apparent activation of ribosomal RNA synthesis in sea urchin embryos: Quantitative measurements of newly synthesized RNA. Develop. Biol. 23, 86–112 (1970)CrossRefGoogle Scholar
  13. Emerson, C. P., Humphreys, T.: Rebosomal RNA synthesis and the multiple atypical nucleoli in cleaving embryos. Science 171, 898–901 (1971)CrossRefGoogle Scholar
  14. Falvey, A. K., Staehelin, T.: Structure and function of mammalian ribosomes. I. Isolation and characterization of active liver ribosomal units. J. molec. Biol. 53, 1–19 (1970)CrossRefGoogle Scholar
  15. Gambrino, R., Metafora, S., Felicetti, L., Reisman, J.: Properties of the ribosomal salt wash from unfertilized and fertilized sea urchin eggs and its effects on natural mRNA translation. Biochem. biophys. Acta (Amst.) 312, 377–391 (1973)CrossRefGoogle Scholar
  16. Garrison, N. E., Bosselman, R. A., Kaulenas, M. S.: The effect of ribosomal protein exchange on the activity of Xenopus laevis ribosomes. Biochem. biophys. Res. Commun. 49, 171–178 (1972)CrossRefGoogle Scholar
  17. Gorovsky, M. A., Carlson, K., Rosenbaum, J. L.: Simple method for quantitative densitometry of polyacrylamide gels using fast green. Anal. Biochem. 35, 359–370 (1970)CrossRefGoogle Scholar
  18. Gould, H. J., Martini, O. H. W., King, H. S. W.: 80S ribosomal proteins. Biochem. J. 129, 31P (1972)CrossRefGoogle Scholar
  19. Gross, P. R.: Biochemistry of differentiation. Ann. Rev. Biochem. 37, 631–660 (1968)CrossRefGoogle Scholar
  20. Hallberg, R. L., Brown, D. D.: Co-ordinated synthesis of some ribosomal proteins and ribosomal RNA in embryos of Xenopus laevis. J. molec. Biol. 46, 393–411 (1969)CrossRefGoogle Scholar
  21. Hinegardner, R. T.: In: Methods in developmental biology. (eds. Wilt, F. H., and Wessells, N. K.), p. 139–155. New York: Thomas Y. Crowell Co. 1967Google Scholar
  22. Hunynh-van-tan, Delaunay, J., Schapira, G.: Eukaryotic ribosomal proteins. Two-dimensional electrophoresis studies. FEBS Letters 17, 163–167 (1971)CrossRefGoogle Scholar
  23. Kajima, S., Wilt, F. H.: Rate of nuclear ribonucleic acid turnover in sea urchin embryos. J. molec. Biol. 40, 235–246 (1969)CrossRefGoogle Scholar
  24. Kaulenas, M. S.: Rapid isolation of insect ribosomal subunits by ethanol-magnesium precipitation. Anal. Biochem. 41, 126–131 (1971)CrossRefGoogle Scholar
  25. Kaulenas, M. S.: The stability of subunit association in Acheta ribosomes. J. Insect. Physiol. 18, 649–673 (1972)CrossRefGoogle Scholar
  26. Kaulenas, M. S., Bosselman, R. A.: Functional and structural differences in ribosomal subunits isolated from monomers and polysomes of Acheta domesticus. Comp. Biochem. Physiol. 49 B, 415–430 (1974)Google Scholar
  27. Kaulenas, M. S., Unsworth, B. R.: Appearance of a kidney-specific ribosomal protein during mouse embryonic development. Biochem. biophys. Res. Commun. 61, 134–141 (1974)CrossRefGoogle Scholar
  28. Kedes, L. H., Gross, P. R.: Identification in cleaving embryos of three RNA species serving as templates for the synthesis of nuclear proteins. Nature (Lond.) 223, 1335–1339 (1969)CrossRefGoogle Scholar
  29. McConkey, E. H.: Composition of mammalian ribosomal subunits: A re-evaluation. Proc. nat. Acad. Sci. (Wash.) 71, 1379–1383 (1974)CrossRefGoogle Scholar
  30. Penman, S., Fan, H., Perlman, S., Rasbash, M., Weinberg, R., Zylber, E.: Distinct RNA synthesis systems of the HeLa cell. Cold. Spr. Harb. Symp. quant. Biol. 35, 561–575 (1970)CrossRefGoogle Scholar
  31. Sherton, C. C., Wool, I. G.: A comparison of the proteins of rat skeletal muscle and liver ribosomes by two-dimensional polyacrylamide gel electrophoresis. J. biol. Chem. 249, 2258–2267 (1974)PubMedGoogle Scholar
  32. Slater, D. W., Spiegelman, S.: Transcriptive expression during sea urchin embryogenesis. Biochem. biophys. Acta (Amst.) 213, 194–207 (1970)CrossRefGoogle Scholar
  33. Stallcup, M. R., Sharrock, W. J., Rabinowitz, J. C.: Ribosomes and messenger specificity in protein synthesis by bacteria. Biochem. biophys. Res. Commun. 58, 92–98 (1974)CrossRefGoogle Scholar
  34. Terman, S. A.: Relative effect of transcription-level and translation-level control of protein synthesis during early development of the sea urchin. Proc. nat. Acad. Sci. (Wash.) 65, 985–992 (1970)CrossRefGoogle Scholar
  35. Traugh, J. A., Traut, R. R.: Recent advances in the preparation of mammalian ribosomes and analysis of their protein composition. Meth. Cell Biol. 7, 67–103 (1973)CrossRefGoogle Scholar
  36. Warner, J. R., Kumar, A., Udem, S. A., Wu, R.: Ribosomal proteins and the assembly of ribosomes in eukaryotes. Biochem. J. 129, 29P (1972)CrossRefGoogle Scholar
  37. Weber, K., Osborn, M.: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. biol. Chem. 244, 4406–4412 (1969)Google Scholar
  38. Wikma-Coffelt, J., Howard, C. A., Traut, R. R.: Comparison of antigenic properties of ribosomal proteins from Novikoff hepatoma and normal liver. Biochim. biophys. Acta (Amst.) 277, 671–676 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Mindaugas S. Kaulenas
    • 1
  • Brian R. Unsworth
    • 1
  1. 1.Biology DepartmentMarquette UniversityMilwaukee

Personalised recommendations