Advertisement

Molecular and General Genetics MGG

, Volume 149, Issue 3, pp 243–249 | Cite as

A virus-specified mechanism for the prevention of multiple infection—T7- and T3-mutual and superinfection exclusion

  • Monica Hirsch-Kauffmann
  • Mei-li Pfennig-Yeh
  • Helmut Ponta
  • Peter Herrlich
Article

Summary

Co-and superinfection of cells with T3/T7 result in exclusion (mutual or superinfection exclusion). The exclusion mechanism is also directed against homologous (or identical) virus. Exclusion is established after the adsorption but before the genome becomes available for gene expression or replication, that is only one virus per cell develops. The exclusion is triggered by a constituant of the viral particle. An early T7 gene (M gene) (Schweiger et al., 1975) is essential for the formation of exclusion competent virions.

Keywords

Gene Expression Viral Particle Multiple Infection Exclusion Mechanism Superinfection Exclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.H., Wade, E.: Classification of bacterial viruses: The relationship of two Serratia phages to coli-dysentery phages T3, T7 and D44. J. Bact. 68, 320–325 (1954)Google Scholar
  2. Anderson, C.W., Williamson, J.R., Eigner, J.: Localization of parental deoxyribonucleic acid from superinfecting T4 bacteriophage in Escherichia coli. J. Virol. 8, 887–893 (1971)Google Scholar
  3. Benzer, S.: Resistance to ultraviolet light as an index to the reproduction of bacteriophage. J. Bact. 63, 59–72 (1952)Google Scholar
  4. Delbrück, M., Bailey, Jr., W.T.: Induced mutations in bacterial viruses. Cold Spr. Harb. Symp. quant. Biol. 11, 33–37 (1946)Google Scholar
  5. French, R.C., Graham, A.F., Lesly, S.M., van Rooyen, C.E.: The contribution of phosphorus from T2r+ bacteriophage to progeny. J. Bact. 64, 597–607 (1952)Google Scholar
  6. Hausmann, R.: Synthesis of an S'-adenosylmethionine-cleaving enzyme in T3-infected Escherichia coli and its disturbance by co-infection with enzymatically incompetent bacteriophage. J. Virol. 1, 57–63 (1967)Google Scholar
  7. Hausmann, R.L., Almeida-Magllhāes, E.P., Araujo, C.: Isolation and characterization of hybrids between bacteriophages T3 and T7. An. Microbiol. Univ. Brasil (Rio de J.) 9, 511–526 (1961)Google Scholar
  8. Hausmann, R.L., Almeida-Magalhāes, E.P., Araujo, C.: Intracellular compatibility of coliphages T3, T7 and Cro. An. Microbiol. Univ. Brasil (Rio de J.) 10, 43–62 (1962)Google Scholar
  9. Herrlich, P., Rahmsdorf, H.J., Schweiger, M.: Regulation of macromolecular synthesis by membrane changes. Adv. Biosci. 12, 523–537 (1974)Google Scholar
  10. Hill, R.F.: A radiation-sensitive mutant of Escherichia coli. Biochem. biophys. Acta (Amst.) 30, 636–637 (1958)Google Scholar
  11. Hyman, R.W., Brunovskis, I., Summers, W.C.: A biochemical comparison of the related bacteriophages T7, φI, φII, W31, H, and T3. Virology 57, 189–206 (1974)Google Scholar
  12. Luria, S.E.: Reactivation of irradiated bacteriophage by transfer of self-reproducing units. Proc. nat. Acad. Sci. (Wash) 33, 253–264 (1947)Google Scholar
  13. Munyon, W., Kit, S.: Inhibition of thymidine kinase formation in LM (TK) cells simultaneously infected with Vaccinia and a thymidine kinaseless Vaccinia mutant. Virology 26, 374–377 (1965)Google Scholar
  14. Parkinson, J.S., Huskey, R.J.: Deletion mutants of bacteriophage Lambda. J. molec. Biol. 56, 369–384 (1971)Google Scholar
  15. Ponta, H., Altendorf, K.-H., Schweiger, M., Hirsch-Kauffmann, M., Pfennig-Yeh, M., Herrlich, P.: E coli membranes become permeable to ions following T7-virus-infection. Molec. gen. Genet. (1976)Google Scholar
  16. Ponta, H., Pon, C.L., Herrlich, P., Gualerzi, C., Hirsch-Kauffmann, M., Pfennig-Yeh, M., Rahmsdorf, H.J., Schweiger, M.: The sex-factor-dependent exclusion of coli virus T7. Europ. J. Biochem. 59, 261–270 (1975)Google Scholar
  17. Ponta, H., Rahmsdorf, H.J., Pai, S.H., Hirsch-Kauffmann, M., Herrlich, P., Schweiger, M.: Control of gene expression in bacteriophage T7: Transcriptional controls. Molec. gen. Genet. 134, 281–297 (1974)Google Scholar
  18. Schweiger, M., Hirsch-Kauffmann, M., Ponta, H., Pfennig-Yeh, M., Herrlich, P.: Biochemistry of T7 development. In: Organisation and expression of the viral genome, FEBS Symposium, Vol. 39, pp. 55–68. Amsterdam: North-Holland 1975Google Scholar
  19. Simon, M.N., Studier, F.W.: Physical mapping of the early region of bacteriophage T7 DNA. J. mol. Biol. 79, 249–265 (1973)Google Scholar
  20. Studier, F.W.: The genetics and physiology of bacteriophage T7. Virology 39, 562–574 (1969)Google Scholar
  21. Studier, F.W.: Gene 0.3 of bacteriophage T7 acts to overcome the DNA restriction system of the host. J. molec. Biol. 94, 283–295 (1975)Google Scholar
  22. Susskind, M.M., Botstein, D., Wright, A.: Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium (III. Failure of superinfecting phage DNA to enter sieA+ lysogens). Virology 62, 350–366 (1974)Google Scholar
  23. Wood, W.B.: Host specificity of DNA produced by Escherichia coli: Bacterial mutations affecting the restriction and modification of DNA. J. molec. Biol. 16, 118–133 (1966)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Monica Hirsch-Kauffmann
    • 1
    • 2
  • Mei-li Pfennig-Yeh
    • 1
    • 2
  • Helmut Ponta
    • 1
    • 2
  • Peter Herrlich
    • 1
    • 2
  1. 1.Max-Planck-Institut für Molekulare GenetikBerlin-DahlemGermany
  2. 2.Max-Planck-Institut für ZellbiologieWilhelmshavenGermany

Personalised recommendations