Advertisement

Molecular and General Genetics MGG

, Volume 172, Issue 2, pp 185–192 | Cite as

Evidence for mutations in the structural gene for homocitrate synthase in Saccharomycopsis lipolytica

  • Claude Gaillardin
  • Henri Heslot
Article

Summary

Eight strains devoid of homocitrate synthase activity were found among lysine requiring mutants of the yeast Saccharomycopsis lipolytica. Genetic analysis of these strains showed that they were all affected at the same locus LYS 1. Three lines of evidence suggest that this locus defines a structural gene for homocitrate synthase. First, the mutations show various degrees of intragenic complementation; it could be shown in some cases that the hybrid enzyme formed in vivo displayed modified properties in vitro. Second, reversion of some of these mutations can result in a modified enzyme (desensitized). Third, a feedback mutant of homocitrate synthase was directly isolated from the wild type strain, and shown to carry a single mutation at or near LYS 1.

We also present here the first attempts at genetic fine mapping in Saccharomycopsis lipolytica.

Keywords

Enzyme Lysine Genetic Analysis Structural Gene Type Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used

lys

lysine

arg

arginine

ade

adenine

ura

uracile

TDL

4,5-transdehydrolysine

Sm

Saccharomycopsis

KR

kilorads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhattacharjee, J.K., Sinha, A.K.: Relationships among genes, enzymes and intermediates of the biosynthetic pathway of lysine in Saccharomyces. Mol. Gen. Genet. 115, 26–30 (1971)Google Scholar
  2. Demain, A.L., Masurekar, P.S.: Lysine inhibition of in vivo homocitrate synthesis in Penicillium chrysogenum. J. Gen. Microbiol. 82, 143–151 (1974)Google Scholar
  3. Denis-Duphil, M., Lacroute, F.: Fine structure of the ura 2 locus in S. cerevisiae. I. In vivo complementation studies. Mol. Gen. Genet. 112, 354–364 (1971)Google Scholar
  4. Esser, K., Stahl, U.: Cytological and genetical studies of the life cycle of Saccharomycopsis lipolytica. Mol. Gen. Genet. 146, 101–106 (1976)Google Scholar
  5. Fowell, R.: Sodium acetate as a sporulation medium for yeast. Nature 170, 578 (1952)Google Scholar
  6. Gaillardin, C.M., Charoy, V., Heslot, H.: A study of copulation, sporulation and meiotic segregation in Candida lipolytica. Arch. Microbiol. 92, 69–83 (1973)Google Scholar
  7. Gaillardin, C.M., Fournier, P., Sylvestre, G., Heslot, H.: Mutants of Saccharomycopsis lipolytica defective in lysine catabolism. J. Bacteriol. 125, 48–57 (1976b)Google Scholar
  8. Gaillardin, C.M., Poirier, L., Heslot, H.: A kinetic study of homocitrate synthase activity in the yeast Saccharomycopsis lipolytica. Biochim. Biophys. Acta 422, 390–406 (1976a)Google Scholar
  9. Gaillardin, C.M., Sylvestre, G., Heslot, H.: The lysine excreting (lex -) phenotype of the yeast Saccharomycopsis lipolytica. Arch. Microbiol. 140, 89–94 (1975)Google Scholar
  10. Gillie, O.J.: The interpretation of complementation data. Genet. Res. (Camb.) 8, 9–31 (1966)Google Scholar
  11. Gutz, H., Heslot, H., Leupold, U., Loprieno, N.: Schizosaccharomyces pombe. In: Handbook of genetics, Vol. 1, pp. 395–446. New York: Plenum Press, 1974Google Scholar
  12. Herman, A.I.: Mating responses in Candida lipolytica. J. Bacteriol. 107, 371 (1971)Google Scholar
  13. Korch, C.T., Snow, R.: Allelic complementation in the first gene of histidine biosynthesis in Saccharomyces cerevisiae. Genetics 74, 287–305 (1973)Google Scholar
  14. Lowry, O.H., Rosebrough, N.J., Faar, A.L., Randall, R.J.: Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  15. Masselot, M., Surdin-Kerjan, Y.: Methionine biosynthesis in Saccharomyces cerevisiae. II. Gene — enzyme relationships in the sulfate assimilation pathway. Mol. Gen. Genet. 154, 23–30 (1977)Google Scholar
  16. Ogrydziak, D., Bassel, J., Contopoulou, R., Mortimer, R.: Development of genetic techniques and the genetic map of the yeast Saccharomycopsis lipolytica. Mol. Gen. Genet. 163, 229–239 (1973)Google Scholar
  17. Parker, J.H., Sherman, F.: Fine structure mapping and mutational studi of gene controlling yeast cytochrome c1. Genetics 62, 9–22 (1969)Google Scholar
  18. Shimura, I., Vogel, H.: Diaminopimelate decarboxylase of Lemna perpusilla: partial purification and some properties. Biochim. Biophys. Acta 118, 396–404 (1966)Google Scholar
  19. Strassman, M., Weinhouse, S.: The biosynthesis of lysine by Torulopsis utilis. J. Am. Chem. Soc. 75, 1680–1684 (1953)Google Scholar
  20. Tracy, J.W., Kolhaw, G.B.: Reversible, coenzyme-A mediated inactivation of biosynthetic condensing enzymes in yeast: a possible regulatory mechanism. Proc. Natl. Acad. Sci. U.S.A. 72, 1802–1806 (1975)Google Scholar
  21. Tucci, A.F., Ceci, L.N.: Homocitrate synthase from yeast. Arch. Biochem. Biophys. 153, 742–754 (1972)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Claude Gaillardin
    • 1
  • Henri Heslot
    • 1
  1. 1.Laboratoire de génétiqueInstitut National AgronomiqueParisFrance

Personalised recommendations