Advertisement

Molecular and General Genetics MGG

, Volume 109, Issue 4, pp 309–322 | Cite as

An explanation of fine structure map expansion in terms of excision repair

  • J. R. S. Fincham
  • R. Holliday
Article

Summary

Fine structure map expansion is a marker effect which can be explained on the basis of the repair of mismatched bases in hybrid DNA. The chance of a mismatched base pair being corrected independently of a closely linked mismatched pair will sharply increase as the distance between the two sites becomes greater than the length of the DNA segment involved in the correction process. The consequences of this explanation are worked out and it is shown that, if it is true, the mapping curve should show three phases: an initial additive phase when the recombining sites are closely linked, a phase of increased slope—map expansion-and a final additive phase of reduced slope beyond the expansion region. Comparison of the initial and final slopes should yield information on the relation between gene conversion and crossing-over. Many sets of experimental data show a clear transition from the initial additive region to that of map expansion, but evidence for the predicted final phase is scanty, possibly because fine structure maps cover too small a region of the chromosome. Using data from genes with known products, estimates can be made of the minimum length of the DNA segments involved in correction. These are calculated as about 40 nucleotides in fission yeast and at least 130 nucleotides in Neurospora.

Keywords

Marker Effect Minimum Length Gene Conversion Excision Repair Final Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carsiotis, M., Appella, E., Provost, P., Germershausen, J., Suskind, S. R.: Chemical and physical studies of the structure of tryptophan synthetase fromNeurospora crassa. Biochem. biophys. Res. Commun.18, 877–888 (1965).CrossRefGoogle Scholar
  2. de Lucia, P., Cairns, J.: Isolation of anE. coli strain with a mutation affecting DNA polymerase. Nature (Lond.)224, 1164–1166 (1969).CrossRefGoogle Scholar
  3. Emerson, S.: Linkage and recombination at the chromosome level. In: Genetic organisation I. (ed. by E. W. Caspair and A. W. Ravin), p. 267. New York: Academic Press 1969.Google Scholar
  4. Fogel, S., Mortimer, R. K.: Informational transfer in meiotic gene conversion. Proc. nat. Acad. Sci. (Wash.)62, 96–103 (1969).CrossRefGoogle Scholar
  5. Goodman, H. M., Abelson, J., Landy, A., Brenner, S., Smith, J. D.: Amber suppression: a nucleotide change in the anticodon of a tyrosine transfer RNA. Nature (Lond.)217, 1019–1024 (1968).CrossRefGoogle Scholar
  6. Hawthorne, D. C.: The selection of nonsense suppressors in yeast. Mutation Res.7, 187–197 (1969).CrossRefGoogle Scholar
  7. Holliday, R.: A mechanism for gene conversion in fungi. Genet. Res. Camb.5, 282–304 (1964).CrossRefGoogle Scholar
  8. —: Genetic recombination in fungi. In: Replication and recombination of genetic material (ed. by W. J. Peacock and R. D. Brock), p. 157. Canberra: Australian Academy of Science 1968.Google Scholar
  9. —, Whitehouse, H. L. K.: The wrong way to think about gene conversion? Molec. Gen. Genetics107, 85–93 (1970).CrossRefGoogle Scholar
  10. Kelly, R. B., Atkinson, M. R., Huberman, J. A., Kornberg, A.: Excision of thymine dimers and other mismatched sequences by DNA polymerase ofEscherichia coli. Nature (Lond.)224, 495–501 (1969).CrossRefGoogle Scholar
  11. Kornberg, A.: Active centre of DNA polymerase. Science163, 1410–1418 (1969).CrossRefGoogle Scholar
  12. Leupold, U.: Intragene Rekombination und allele Komplementierung. Arch. Klaus-Stift. Vererb.-Forsch.36, 89–117 (1961).Google Scholar
  13. —: Genetic studies on nonsense suppressors inSchizosaccharomyces pombe. (Abstr.) Heredity,25, 493 (1970).Google Scholar
  14. Leupold, U. Hofer, F.: In preparation (1970).Google Scholar
  15. Mousseau, J.: Analyse de la structure fine d'un gène chezAscobolus immersus. Contribution à l'étude de la recombination méiotique. Thesis. University of Paris (1967).Google Scholar
  16. Norkin, L. C.: Marker-specific effects in genetic recombination. J. Molec. Biol.51, 633 (1970).CrossRefGoogle Scholar
  17. Rossignol, J.-L.: Phenomènes de recombinaison intragénique et unité fonctionelle d'un locus chez l'Ascobolus immersus. Thesis, University of Paris (1964).Google Scholar
  18. — Existence of homogeneous categories of mutants exhibiting various conversion patterns in gene 75 ofAscobolus immersus. Genetics63, 795–805 (1969)PubMedPubMedCentralGoogle Scholar
  19. Siddiqi, O. H.: The genetic fine structure of thepaba-1 region ofAspergillus nidulans. Genet. Res. Camb.3, 69–80 (1962).CrossRefGoogle Scholar
  20. —, Putrament, A.: Polarized negative interference in thepaba-1 region ofAspergillus nidulans. Genet. Res. Camb.4, 12–20 (1963).CrossRefGoogle Scholar
  21. Smith, B. R.: Interallelic recombination at thehis-5 locus inNeurospora crassa. Heredity20, 257–276 (1965).CrossRefGoogle Scholar
  22. Spatz, H. Ch., Trautner, T. A.: One way to do experiments on gene conversion? Transfection with heteroduplexSPP1 DNA. Molec. Gen. Genetics109, 84–106 (1970).CrossRefGoogle Scholar
  23. Suyama, Y., Lacy, A. M., Bonner, D. M.: A genetic map of thetd locus ofNeurospora crassa. Genetics49, 135–144 (1964).PubMedPubMedCentralGoogle Scholar
  24. Whitehouse, H. L. K., Hastings, P. J.: The analysis of genetic recombination on the polaron hybrid DNA model. Genet. Res. Camb.6, 27–92 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • J. R. S. Fincham
    • 1
    • 2
  • R. Holliday
    • 1
    • 2
  1. 1.Department of GeneticsUniversity of LeedsLeeds
  2. 2.Division of GeneticsNational Institute for Medical ResearchLondon

Personalised recommendations