Molecular and General Genetics MGG

, Volume 133, Issue 3, pp 179–191 | Cite as

Mutational specificity of a conditional Escherichia coli mutator, mutD5

  • Robert G. Fowler
  • Gerald E. Degnen
  • Edward C. Cox


MutD5, a conditional mutator in Escherichia coli, causes the stimulation of mutation frequencies 50 to 100 fold in minimal medium. In rich medium mutation frequencies are further increased 50 to 100 fold. We show here that all possible base-pair mutations are increased in a mutD5 strain grown in rich medium. A:T↔G:C transitions as well as A:T↔C:G, A:T↔T:A aud G:C↔C:G transversions are stimulated. Transitions occur more frequently than transversions. MutD5 also increases the reversion frequencies of three trpA frameshift mutations by causing base-pair additions, and, possibly, base-pair deletions.


Escherichia Coli Minimal Medium Mutation Frequency Frameshift Mutation Rich Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M. K., Yanofsky, C.: A biochemical and genetic study of reversion with the A-gene A-protein system of Escherichia coli tryptophan synthetase. Genetics 48, 1065–1083 (1963)Google Scholar
  2. Berger, H., Brammar, W. J., Yanofsky, C.: Spontaneous and ICR191-A induced frameshift mutations in the A gene of Escherichia coli tryptophan synthetase. J. Bact. 96, 1672–1679 (1968)Google Scholar
  3. Berger, H., Yanofsky, C.: Suppressor selection for amino acid replacements expected on the basis of the genetic code. Science 156, 394–397 (1967)Google Scholar
  4. Brammar, W. J.: Independent expression of the A gene of the tryptophan operon of Escherichia coli during tryptophan starvation. J. gen. Microbiol. 76, 395–405 (1973)Google Scholar
  5. Brammar, W. J., Berger, H., Yanofsky, C.: Altered amino acid sequences produced by reversion of frameshift mutants of tryptophan synthetase A gene of E. coli. Proc. nat. Acad. Sci. (Wash.) 58, 1499–1506 (1967)Google Scholar
  6. Brutlag, D., Kornberg, A.: Enzymatic synthesis of DNA. XXXVI. A proofreading function for the 3′–5′ exonuclease activity in DNA polymerases. J. biol. Chem. 247, 241–248 (1972)Google Scholar
  7. Cox, E. C., Degnen, G. E., Scheppe, M. L.: Mutator gene studies in Escherichia coli: The mutS gene. Genetics 72, 551–567 (1972)Google Scholar
  8. Cox, E. C., Yanofsky, C.: Altered base ratios in the DNA of an Escherichia coli mutator strain. Proc. nat. Acad. Sci. (Wash.) 58, 1895–1902 (1967)Google Scholar
  9. Crick, F. H. C.: Codon-anticodon pairing: The Wobble hypothesis. J. molec. Biol. 19, 548–555 (1966)Google Scholar
  10. Degnen, G. E., Cox, E. C.: A conditional mutator gene in Escherichia coli: Isolation, mapping and effector studies. J. Bact. 117, 477–487 (1974)Google Scholar
  11. Demerec, M., Adelberg, E. A., Clark, A. J., Hartman, P. E.: A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 61–76 (1966)Google Scholar
  12. Drapeau, G. R., Brammar, W. J., Yanofsky, C.: Amino acid replacements of the glutamic acid residue at position 48 in the tryptophan synthetase A protein of Escherichia coli. J. molec. Biol. 35, 395–405 (1973)Google Scholar
  13. Fresco, J. R., Alberts, B. M.: The accommodation of noncomplementary bases in helical polyribonucleotides and deoxyribonucleic acids. Proc. nat. Acad. Sci. (Wash.) 46, 311–321 (1960)Google Scholar
  14. Hall, R. M., Brammar, W. J.: Increased spontaneous mutation rates in mutants of E. coli with altered DNA polymerase III. Molec. gen. Genet. 121, 271–276 (1973)Google Scholar
  15. Lennox, E. S.: Transduction of linked genetic characters of the host by bacteriophage Pl. Virology 1, 190–206 (1955)Google Scholar
  16. Lester, G., Yanofsky, C.: Influence of 3-methylanthranilic and anthranilic acids on the formation of tryptophan synthetase in Escherichia coli. J. Bact. 81, 81–90 (1961)Google Scholar
  17. Newton, A., Masys, D., Leonardi, E., Wygal, D.: Association of induced frameshift mutagenesis and DNA replication in Escherichia coli. Nature (Lond.) new Biol. 236, 19–22 (1972)Google Scholar
  18. Pardee, A. B., Jacob, F., Monod, J.: The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by E. coli. J. molec. Biol. 1, 165–178 (1959)Google Scholar
  19. Siegel, E. C.: Ultraviolet-sensitive mutator strain of Escherichia coli K-12. J. Bact. 113, 145–160 (1973)Google Scholar
  20. Siegel, E. C., Bryson, V.: Mutator gene of Escherichia coli B. J. Bact. 94, 38–47 (1967)Google Scholar
  21. Siegel, E. C., Kamel, F.: Reversion of frameshift mutations by mutator genes in Escherichia coli. J. Bact. 117, 994–1001 (1974)Google Scholar
  22. Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E., Inouye, M.: Frameshift mutations and the genetic code. Cold Spr. Harb. Symp. quant. Biol. 31, 77–84 (1966)Google Scholar
  23. Treffers, H. P., Spinelli, V., Belser, N. O.: A factor (or mutator gene) influencing mutation rates in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 40, 1064–1071 (1954)Google Scholar
  24. Vogel, H. J., Bonner, D. M.: Acetylornithinase of Escherichia coli: Partial purification and some properties. J. biol. Chem. 218, 97–106 (1956)Google Scholar
  25. Yanofsky, C., Carlton, B. C., Guest, J. R., Helinski, D. R., Henning, U.: On the colinearity of gene structure and protein structure. Proc. nat. Acad. Sci. (Wash.) 51, 266–272 (1964)Google Scholar
  26. Yanofsky, C., Cox, E. C., Horn, V. D.: The unusual mutagenic specificity of an Escherichia coli mutator gene. Proc. nat. Acad. Sci. (Wash.) 55, 274–281 (1966a)Google Scholar
  27. Yanofsky, C., Ito, J., Horn, V. D.: Amino acid replacements and the genetic code. Cold Spr. Harb. Symp. quant. Biol. 31, 151–162 (1966b)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Robert G. Fowler
    • 1
    • 2
  • Gerald E. Degnen
    • 1
    • 2
    • 3
  • Edward C. Cox
    • 1
    • 2
  1. 1.Department of BiologyPrinceton UniversityPrincetonUSA
  2. 2.Department of Biochemical SciencesPrinceton UniversityPrincetonUSA
  3. 3.Department of Human GeneticsYale UniversityNew HavenUSA

Personalised recommendations