Molecular and General Genetics MGG

, Volume 160, Issue 2, pp 225–229 | Cite as

A mutation leading to the total lack of nitrite reductase activity in Escherichia coli K 12

  • M. Chippaux
  • D. Giudici
  • A. Abou-Jaoudé
  • F. Casse
  • M. C. Pascal


Mutants of E. coli, completely devoid of nitrite reductase activity with glucose or formate as donor were studied. Biochemical analysis indicates that they are simultaneously affected in nitrate reductase, nitrite reductase, fumarate reductase and hydrogenase activities as well as in cytochrome c552 biosynthesis. The use of an antiserum specific for nitrate reductase shows that the nitrate reductase protein is probably missing. A single mutation is responsible for this phenotype: the gene affected, nir R, is located close to tyr R i.e. at 29 min on the chromosomal map.


Glucose Nitrate Nitrite Biochemical Analysis Nitrate Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







nitrate reductase


nitrite reductase


fumarate reductase



CYT c552

cytochrome c552


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou Jaoudé, A., Chippaux, M., Pascal, M.C., Casse, F.: Formate: a new electron donor for nitrite reduction in Escherichia coli K 12. Biochem. biophys. Res. Commun. 78, 579–583 (1977)Google Scholar
  2. Abou Jaoudé, A., Pascal, M.C., Casse, F., Chippaux, M.: Isolation and phenotypes of mutants from Escherichia coli K12 defective in nitrite reductase activity. FEMS Letters (accepted for publication)Google Scholar
  3. Adelberg, E.A., Mandel, M., Chein Ching Chen, G.: Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochem. biophys. Res. Commun. 18, 788–795 (1965)Google Scholar
  4. Bachman, B.J., Brooks Low, P., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K12. Bact. Rev. 40, 116–167 (1976)Google Scholar
  5. Camakaris, H., Pittard, J.: Regulation of tyrosine and phenylalanine biosynthesis in Escherichia coli K12: Properties of the tyr R gene products. J. Bact. 115, 1135–1144 (1973)Google Scholar
  6. Casse, F., Pascal, M.C., Chippaux, M., Ratouchniak, J.: Genetic analysis of mutants from Escherichia coli K12 unable to grow anaerobically without exogenous acceptor. Molec. gen. Genet. 148, 337–340 (1976)Google Scholar
  7. Chippaux, M., Forget, P.: Mesure de l'activité de l'hydrogénase. Biochimie 54, 1217–1219 (1972)Google Scholar
  8. Cole, J.: Cytochrome c552 and nitrite reduction in Escherichia coli. Biochim. biophys. Acta. (Amst.) 162, 356–368 (1968)Google Scholar
  9. Cole, J.A., Ward, F.B.: Nitrite reductase-deficient mutants of Escherichia coli K12. J. gen. Microbiol. 76, 21–29 (1973)Google Scholar
  10. Coleman, K.J., Cornish-Bowden, A.J., Cole, J.A.: Purification and properties of nitrite reductase from Escherichia coli K12. Proc. Soc. gen. Microbiol. 3, 84 (1976)Google Scholar
  11. Davis, B.D., Mingioli, E.S.: Mutants of Escherichia coli requiring methionine or vitamine B12. J. Bact. 60, 17–28 (1950)Google Scholar
  12. Gray, C.T., Wimpenny, J.W.T., Hughes, D.E., Ranlett, M.: A soluble c-type cytochrome from anaerobically grown Escherichia coli and various entero-bacteriaceae. Biochim. biophys. Acta (Amst.) 67, 157–160 (1963)Google Scholar
  13. Heidelberger, M., Kendall, F.E.: A quantitative theory of the precipiting reaction. III. The reaction between crystalline egg albumin and its homologous antibody. J. exp. Med. 62, 697–720 (1935)Google Scholar
  14. Kemp, J.D., Atkinson, D.E.: Nitrite reductase of Escherichia coli specific for reduced nicotinamide adenine dinucleotide. J. Bact. 92, 628–634 (1966)Google Scholar
  15. Lambden, P.R., Guest, J.R.: Mutants of Escherichia coli K 12 unable to use fumarate as an anaerobic electron acceptor. J. gen. Microbiol. 97, 145–160 (1976)Google Scholar
  16. Lazzarini, R.A., Atkinson, D.E.: A triphosphopyridine nucleotide-specific nitrite reductase from Escherichia coli. J. biol. Chem. 236, 3330–3335 (1961)Google Scholar
  17. Lennox, E.S.: Transduction of linked genetic characters of the host by bacteriophage P1. Virology, 1, 190–206 (1955)Google Scholar
  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  19. Pascal, M.C., Casse, F., Chippaux, M., Lepelletier, M.: Genetic analysis of mutants of Escherichia coli and Salmonella typhimurium deficient in hydrogenase activity. Molec. gen. Genet. 141, 173–179 (1975)Google Scholar
  20. Pichinoty, F.: Action répressive de l'oxygène sur la biosynthèse de la fumarique-reductase d'Aerobacter aerogenes. Experientia (Basel) 18, 257–263 (1962)Google Scholar
  21. Pichinoty, F.: Propriétés, régulation et fonction physiologique des nitrate-reductases bactériennes A et B. Enzymologia 26, 176 (1966)Google Scholar
  22. Pichinoty, F.: Recherche des activités formiate-oxydase, hydrogène lyase, hydrogénase et formiate déshydrogénase chez quelques Entero-bacteriaceae. Ann. Inst. Pasteur 117, 3–15 (1969)Google Scholar
  23. Pichinoty, F., Chippaux, M.: Recherches sur des mutants bactériens ayant perdu les activités catalytiques liées à la nitrate-réductase A. III. Caractères biochimiques. Ann. Inst. Pasteur 117, 145–178 (1969)Google Scholar
  24. Puig, J., Azoulay, E., Pichinoty, F., Gendre, J.: Genetic mapping of the chl C gene of nitrate reductase A system in Escherichia coli K12. Biochem. biophys. Res. Commun. 35, 659–662 (1969)Google Scholar
  25. Spencer, M.E., Guest, J.R.: Isolation and properties of fumarate reductase mutants of Escherichia coli. J. Bact. 114, 563–570 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • M. Chippaux
    • 1
  • D. Giudici
    • 1
  • A. Abou-Jaoudé
    • 1
  • F. Casse
    • 1
  • M. C. Pascal
    • 1
  1. 1.Laboratoire de Chimie Bactérienne C.N.R.S.Marseille Cedex 2France

Personalised recommendations