Advertisement

Molecular and General Genetics MGG

, Volume 177, Issue 2, pp 251–260 | Cite as

A relationship between plasmid structure, structural lability, and sensitivity to site-specific endonucleases in Neisseria gonorrhoeae

  • John K. Davies
  • Staffan Normark
Article

Summary

Nearly all gonococcal strains carry a small “phenotypically cryptic” plasmid of approximately 4,200 basepairs. A detailed physical map of this plasmid has been constructed, revealing the presence of numerous putative inverted repeats. These studies also revealed the presence on the plasmid of recognition sequences for several site-specific endonucleases (particularly HpaII, MspI and AluI) that are particularly resistant to cleavage, and confirmed previous reports of structural lability. Both the sites that are resistant to cleavage, and the observed structural variation are associated with the inverted repetitive sequences.

Keywords

Structural Variation Repetitive Sequence Inverted Repeat Recognition Sequence Neisseria Gonorrhoeae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, G.N., Schweinruber, M.E., Brown, K.D., Squires, C., Yanofsky, C.: Nucleotide sequence of region preceding trpmRNA initiation site and its role in promoter and operator function. Proc. Natl. Acad. Sci. U.S.A. 73, 2351–2355 (1976)Google Scholar
  2. Cedar, H., Solage, A., Glaser, G., Razin, A.: Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res. 6, 2125–2132 (1979)Google Scholar
  3. Edlund, T., Grundström, T., Normark, S: Isolation and characterization of DNA repetitions carrying the chromosomal β-lactamase gene of Escherichia coli K-12. Mol. Gen. Genet. 173, 115–125 (1979)Google Scholar
  4. Eisenstein, B.I., Sox, T., Biswas, G., Blackman, E., Sparling, P.F.: Conjugal transfer of the gonococcal penicillinase plasmid. Science 195, 998–1000 (1977)Google Scholar
  5. Elwell, L.P., Falkow, S.: Plasmids of the genus Neisseria. In: The gonococcus. (R.B. Roberts, ed.), pp. 138–154. New York: Wiley & Sons, 1977Google Scholar
  6. Forsblom, S., Rigler, R., Ehrenberg, M., Pettersson, U., Philipson, L.: Kinetic studies on the cleavage of adenovirus DNA by restriction endonuclease EcoR1. Nucleic Acids Res. 3, 3255–3269 (1976)Google Scholar
  7. Foster, R.S., Foster, G.C.: Electrophoretic comparison of endonuclease-digested plasmids from Neisseria gonorrhoeae. J. Bacteriol. 126, 1297–1304 (1976)Google Scholar
  8. Ghosal, D., Sommer, H., Saedler, H.: Nucleotide sequence of the transposable DNA element IS2. Nucleic Acids Res. 6, 1111–1121 (1979)Google Scholar
  9. Johnsrud, L.: DNA sequence of the transposable element IS1. Mol. Gen. Genet. 169, 213–218 (1979)Google Scholar
  10. Mayer, L.W., Holmes, K.K., Falkow, S.: Characterization of plasmid deoxyribonucleic acid from Neisseria gonorrhoeae. Infect. Immun. 10, 712–717 (1974)Google Scholar
  11. Norlander, L., Davies, J., Normark, S.: Genetic exchange mechanisms in Neisseria gonorrhoeae. J. Bacteriol. 138, 756–761 (1979a)Google Scholar
  12. Norlander, L., Davies, J., Norqvist, A., Normark, S.: A genetic basis for colonial variation in Neisseria gonorrhoeae. J. Bacteriol. 138, 762–769 (1979b)Google Scholar
  13. Polisky, B., Greene, P., Garfin, P.E., McCarthy, B.J., Goodman, H.M., Boger, H.W.: Specificity of substrate recognition by the EcoR1 restriction endonuclease. Proc. Natl. Acad. Sci. U.S.A. 72, 3310–3314 (1975)Google Scholar
  14. Reif, H.J., Saedler, H.: Chromosomal rearrangements in the gal region of E. coli K-12 after integration of IS1. In: DNA insertion elements plasmids and episomes (Bukhari, A.I., J.A. Shapiro, and S.L. Adhuya, eds.), pp. 81–91. New York: Cold Spring Harbor Laboratory 1977Google Scholar
  15. Roberts, M., Elwell, L., Falkow, S.: Introduction to the mechanisms of genetic exchange in the gonococcus: Plasmids and conjugation in Neisseria gonorrhoeae. In: Immunobiology of Neisseria gonorrhoeae (Brooks, G.F., et al., eds.), pp. 38–43. Washington, DC: American Soc. Microbiol. 1978Google Scholar
  16. Roberts, M., Falkow, S.: Conjugal transfer of R-plasmids in Neisseria gonorrhoeae. Nature 266, 630–631 (1977)Google Scholar
  17. Sparling, P.F., Sox, T.E., Mohammed, W., Guymon, L.F.: Antibiotic resistance in the gonococcus: Diverse mechanisms of coping with a hostile environment. In: Immunobiology of Neisseria gonorrhoeae (Brooks, G.F., et al., eds.), pp. 44–52. Washington, DC: American Soc. Microbiol. 1978Google Scholar
  18. Stiffler, P.W., Luner, S.A., Bohnhoff, M., Morello, J.A.: Plasmid deoxyribonucleic acid in clinical isolates of Neisseria gonorrhoeae. J. Bacteriol. 122, 1293–1300 (1975)Google Scholar
  19. Sox, T.E., Mohammed, W., Blackman, E., Biswas, G., Sparling, P.F.: Conjugative plasmids in Neisseria gonorrhoeae. J. Bacteriol. 134, 278–286 (1978)Google Scholar
  20. Sutcliffe, J.G.: pBR322 restriction map derived from the DNA sequence: Accurate DNA size markers up to 4361 nucleotide pairs long. Nucleic Acids Res. 5, 2721–2728 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • John K. Davies
    • 1
  • Staffan Normark
    • 1
  1. 1.Department of MicrobiologyUniversity of UmeåUmeåSweden

Personalised recommendations