Advertisement

Molecular and General Genetics MGG

, Volume 164, Issue 2, pp 227–234 | Cite as

Basic for slow growth on non-fermentable substrates by a Saccharomyces cerevisiae mutant UV-sensitive for rho production

  • Bill Crosby
  • Anne-Marie Colson
  • Michel Briquet
  • Ethel Moustacchi
  • André Goffeau
Article

Summary

The mutant uvsρ 72 of Saccharomyces cerevisiae UV-sensitive for rho- production displays slower growth on media containing non-fermentable carbon sources such as glycerol or lactate. The slower growth on glycerol is not due to any deficiency in glycerol catabolism or mitochondrial oxidative phosphorylation. No modifications of the sensitivity to ethidium bromide of the mitochondrial ATPase activity could be detected. A mathematical model is presented which accounts for slower growth of uvsρ 72 on the sole basis of the continuous and elevated rho- production in the mutant strain. This model, which estimates the rate of mutation from the rate of growth and vice versa, has been verified experimentally in the case of uvsρ 72. The model has been generalised, so that it can be used for any microbial population subject to constant and high rates of any type of mutation providing that the mutant is stable, and either unable to grow or able to grow at this own rate different from that of the parental strain.

Keywords

Glycerol Lactate Carbon Source Ethidium Ethidium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

UV

ultraviolet light (254 nm)

YG, YD, YL, YDG

culture media containing respectively 3% glycerol, 1% glucose, 3% lactate and 0.1% glucose plus 3% glycerol

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bastos, R.N., Mahler, H.R.: Molecular mechanisms of mitochondrial genetic activity. Effects of ethidium bromide on the deoxyribonucleic acid and energetics of isolated mitochondria. J. biol. Chem. 249, 6617–6627 (1974)Google Scholar
  2. Bergmeyer, H.U., Holz, G., Kauder, E.M., Mölering, H., Wieland, O.: Kristallisierre glycerokynase aus Candida mycoderma. Biochem. Z. 333, 471–480 (1961)Google Scholar
  3. Borstel, R.C., von: Measuring spontaneous mutation rates in yeast. In: Methods of cell biology (D.M. Prescott, ed.) Vol. 20, pp. 1 to 24. New York: Acad. Press 1978Google Scholar
  4. Briquet, M.: Transport of pyruvate and lactate in yeast mitochondria. Biochim. biophys. Acta (Amst.) 459, 290–299 (1977)Google Scholar
  5. Briquet, M., Sabadie-Pialoux, N., Goffeau, A.: Ziram, a sulfhydryl reagent and specific inhibitor of yeast mitochondria dehydrogenases. Arch. Biochem. Biophys. 174, 684–694 (1976)Google Scholar
  6. Claisse, M., Pajot, P.: Estimation of cytochrome contents in whole cells of Saccaromyces cerevisiae; evidence for presence of cytochrome cl in rho- “petite” mutants. Proceedings of the Fourth International Symposium on Yeasts, Vienna, Austria, pp. 114–115 (1974)Google Scholar
  7. Claisse, M., Péré-Aubert, G.A., Clavilier, L.P., Slonimski, P.P.: Méthode d'estimation de la concentration des cytochromes dans les cellules entières de levure. Europ. J. Biochem. 16, 430–438 (1970)Google Scholar
  8. Ephrussi, B., L'Heritier, Ph., Hottinguer, H.: Action de l'acriflavine sur les levures. VI. Analyse quantitative de la transformation des populations. Ann. Inst. Pasteur 77, 64–83 (1949)Google Scholar
  9. Goffeau, A., Landry, Y., Foury, F., Briquet, M., Colson, A.-M.: Oligomycin resistance of mitochondrial adenosine triphosphatase in a pleiotropic chromosomal mutant of a “petitenegative” yeast Schizosaccharomyces pombe. J. biol. Chem. 248, 7097–7105 (1973)Google Scholar
  10. Handwerker, A., Schweyen, R.J., Wolf, K., Kaudewitz, F.: Evidence for an extrakaryotic mutation affecting the maintenance of the rho factor in yeast. J. Bact. 113, 1307–1310 (1973)Google Scholar
  11. Herbert, D., Elsworth, R., Telling, R.C.: The continuous culture of bacteria; a theoretical and experimental study. J. gen. Microbiol. 14, 601–622 (1956)Google Scholar
  12. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin-Phenol reagent. J. biol. Chem. 193, 26–75 (1951)Google Scholar
  13. Luria, S.E., Delbrük, M.: Mutation of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943)Google Scholar
  14. Mahler, H.R.: Structural requirements for mitochondrial mutagenesis. J. supramol. Struct. 1, 449–460 (1973)Google Scholar
  15. Mahler, H.R., Bastos, R.N.: Coupling between mitochondrial mutation and energy transduction. Proc. nat. Acad. Sci. (Wash.) 71, 2241–2245 (1974)Google Scholar
  16. Mahler, H.R., Perlman, P.S.: Mutagenesis by ethidium bromide and mitochondrial membrane. J. supramol. Struct. 1, 105–124 (1972)Google Scholar
  17. Monod, J.: La technique de culture continue. Théorie et applications. Ann. Inst. Pasteur (Lille) 79, 390 (1950)Google Scholar
  18. Moustacchi, E., Enteric, S.: Repair of cytoplasmic genetic damage in yeast. In: Proceedings of the 4th International Congress of Radiation Research, pp. 586 Evian: Bellanger Sarth (1970a)Google Scholar
  19. Moustacchi, E., Enteric, S.: Differential “liquid holding recovery” for the lethal effect and cytoplasmic petite induction by UV light in Saccharomyces cerevisiae. Molec. gen. Genet. 109, 69–83 (1970b)Google Scholar
  20. Moustacchi, E., Waters, R., Heude, M., Chanet, R.: The present status of DNA repair mechanisms in UV irradiated yeast taken as a model eukaryotic system. In: Radiation research. Biomedical, chemical and physical perspective, (O.F. Nygaard, H.I. Adler, W.K. Sinclair, eds.), pp. 632–650. New York: Academic Press 1975Google Scholar
  21. Ogur, M., St. John, R., Nagai, S.: Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125, 925–929 (1957)Google Scholar
  22. Ogur, M., St. John, R., Ogur, S., Mark, A.M.: Direct estimation of mutation rate from mutant frequency under special conditions. Genetics 44, 483–496 (1959)Google Scholar
  23. Pullman, M.E., Penefsky, H.S.: Preparation and assay of phosphorylating submitochondrial systems: mechanically ruptured mitochondria. Methods Enzymol. 6, 277–284 (1963)Google Scholar
  24. Stevens, B.J., Moustacchi, E.: Ultrastructural characterization of mitochondria from a yeast mutant sensitive to “petite” induction (uvsρ72). In: Genetics, biogenesis and bioenergetics of mitochondria (W.Bandlow, R.J. Schweyen, D.Y. Thomas, K. Wolf, F. Kaudewitz, eds.), pp. 137–152. Berlin: Walter de Gruyter 1976Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Bill Crosby
    • 1
  • Anne-Marie Colson
    • 1
  • Michel Briquet
    • 1
  • Ethel Moustacchi
    • 1
    • 2
  • André Goffeau
    • 1
  1. 1.Laboratoire d'EnzymologieUniversité de LouvainLouvain-la-NeuveBelgium
  2. 2.Section de BiologieFondation CurieOrsayFrance

Personalised recommendations