Molecular and General Genetics MGG

, Volume 164, Issue 2, pp 163–169 | Cite as

Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12

  • J. Lengeler
  • H. Steinberger
Article

Summary

The synthesis of the transport systems (enzymeII-complexes) coded for in the mtl and in the gut (srl) operon was found to be induced by unphosphorylated D-mannitol and D-glucitol respectively. Induction from the outside however is only possible if these polyols are taken up into the cells. Induction of the D-mannitol system is immediate, resistant against catabolite repression, relatively insensitive towards transient repression and starts from a high uninduced level (5–30%). By contrast, the induction of the D-glucitol system starts at a low basal level (0.5–2.5%), does show a pronounced lag from 25 to 90 min, and is hypersensitive towards catabolite and transient repression. These differences apparently reflect primarely differences in the corresponding operator-promotor genes mtl(P,O) and gut(P,O) as well as differences in the uptake of the first, inducing hexitol molecules. For each operon additional regulatory genes exist, called mtlR and gutR respectively, in which transrecessive, temperature sensitive mutations leading to a constitutive expression of the corresponding operon can be found. The influence of these regulatory mechanisms in diauxie experiments and their importance for the differentiation of the three operons during evolution from apparently one common ancestor operon will be discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, J., Epstein, W.: Phosphotransferase system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc. nat. Acad. Sci. (Wash.) 71, 2895–2899 (1974)Google Scholar
  2. Bachmann B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K-12. Bact. Rev. 40, 116–167 (1976)Google Scholar
  3. French D, Wild, G.M., Young, B., James, W.J.: Constitution of planteose. J. Amer. chem. Soc. 75, 709–712 (1953)Google Scholar
  4. Hofsten, v.B.: The inhibitory effect of galactosides on the growth of E. coli. Biochim. biophys. Acta (Amst.) 48, 164–171 (1961)Google Scholar
  5. Jones-Mortimer, M.C., Kornberg, H.L.: Uptake of fructose by the sorbitol phosphotransferase of Escherichia coli K12 J. gen. Microbiol. 96, 383–391 (1976)Google Scholar
  6. Kornberg, H.L., Jones-Mortimer, M.C.: The phosphotransferase system as a site of cellular control. Symp. Soc. Gen. Microbiol. XXVII. Microbial Energetics 217–240 (1977)Google Scholar
  7. Lengeler, J.: Untersuchungen zum Glukose-Effekt bei der Synthese der Galaktose-Enzyme von Escherichia coli. Z. Vererbungsl. 98, 203–229 (1966)Google Scholar
  8. Lengeler, J.: Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactiol in Escherichia coli K12: isolation and mapping. J. Bact. 124, 26–38 (1975a)Google Scholar
  9. Lengeler, J.: Nature and properties of hexitol transport systems in Escherichia coli. J. Bact. 124, 39–47 (1975b)Google Scholar
  10. Lengeler, J.: Analysis of mutations affecting the dissimilation of galactitol (dulcitol) in Escherichia coli K12. Molec. gen. Genet. 152, 83–91 (1977)Google Scholar
  11. Lengeler, J., Lin, E.C.C.: Reversal of the mannitol-sorbitol diauxie in Escherichia coli. J. Bact. 112, 840–848 (1972)Google Scholar
  12. Magasanik, B.: Glucose effects: inducer exclusion and repression (Beckwith, J., Zipser, D.) In: The lac operon eds., p 189–219 Laboratory New York: Cold Spring Harbor 1970Google Scholar
  13. McEntee, K.: Genetic analysis of the Escherichia coli K12 srl region. J. Bact. 132, 904–911 (1977)Google Scholar
  14. Monod, J.: Recherches sur la croissance des cultures bactériennes. Paris: Herrman 1942Google Scholar
  15. Paigen, K., Williams, B.: Catabolite repression and other control mechanisms in carbohydrate utilization. Advan. Microbiol. Physiol. 4, 251–324 (1970)Google Scholar
  16. Pastan, J., Adhya, S.: Cyclic adenosine 5′monophosphate in Escherichia coli. Bact. Rev. 40, 527–551 (1976)Google Scholar
  17. Postma, P.W., Roseman, S.: The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochem. biophys. acta (Amst.) 457, 213–257 (1976)Google Scholar
  18. Ruch, R.E., Lengler, J., Lin, E.C.C.: Regulation of glycerol catabolism in Klebsiella aerogenes. J. Bact. 119, 50–56 (1974)Google Scholar
  19. Saier, M.H., Jr.: Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: strucural, functional, and evolutionary interrelationships. Bact. Rev. 41, 856–871 (1977)Google Scholar
  20. Solomon, E., Kenji, M., Lin, E.C.C.: Membrane translocation of mannitol in Escherichia coli without phosphorylation. J. Bact. 114, 723–728 (1973)Google Scholar
  21. Solomon, E., Lin, E.C.C.: Mutations affecting the dissimilation of mannitol by Escherichia coli K12. J. Bact. 111, 566–574 (1972)Google Scholar
  22. Yashpe, J., Kaplan, N.O.: Revertants of Escherichia coli mutants defective in the cyclic AMP system. Arch. Biochem. Biophys. 167, 388–392 (1975)Google Scholar
  23. Zipkas, D., Riley, M.: Proposal concerning mechanism of evolution of the genome of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 72, 1354–1358 (1965)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. Lengeler
    • 1
  • H. Steinberger
    • 1
  1. 1.Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biologie IXUniversität RegensburgRegensburgGermany

Personalised recommendations