Molecular and General Genetics MGG

, Volume 158, Issue 3, pp 251–261

Vegetative segregation of mitochondria in yeast: Estimating parameters using a random model

  • C. William BirkyJr.
  • Robert L. Strausberg
  • Jean L. Forster
  • Philip S. Perlman
Article

Summary

Yeast zygotes which are heteroplasmic for mitochondrial genes reproduce vegetatively to form clones of diploid progeny which are homoplasmic. This vegetative segregation of mitochondrial genes has been interpreted in terms of a random distribution of mitochondria or mitochondrial genomes between mother and bud at cell division. We have developed equations which permit calculation of the number of segregating units in the zygote and the number of those units which enter the bud, assuming that segregation of the units is genetically random and numerically variable or equal. Use of the equations requires data from partial pedigree analyses: we isolate zygotes, separate the first bud, then determine the frequency of mitochondrial alleles among the progeny of mother cells whose first buds were homoplasmic. Application of this method to data from five crosses suggests that most zygotes have a small number of segregating units (usually less than a dozen) and only one or two enter the first bud. Analysis of the frequency of buds which are nearly but not quite homoplasmic indicates that the segregating units may be mitochondria or portions thereof which include many mitochondrial genomes, all the genomes in a unit being genetically identical in most but not all cases. These results are compatible with, but do not prove, the hypothesis of random vegetative segregation of mitochondria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aufderheide, K.J.: Cytoplasmic inheritance of Saccharomyces cerevisiae: Comparison of first zygotic budsite to mitochondrial inheritance patterns. Molec. gen. Genet. 140, 231–241 (1975)Google Scholar
  2. Aufderheide, K.J., Johnson, R.G.: Cytoplasmic inheritance in Saccharomyces cerevisiae: Comparison of zygotic mitochondrial inheritance patterns. Molec. gen. Genet. 144, 289–299 (1976)Google Scholar
  3. Birky, C.W. Jr.: Mitochondrial genetics in fungi and ciliates. In: The genetics and biogenesis of mitochondria and chloroplasts (C.W. Birky, Jr., P.S. Perlman, and T.J. Byers, eds.), pp. 182–224. Columbus: The Ohio State University Press 1975aGoogle Scholar
  4. Birky, C.W., Jr.: Zygote heterogeneity and uniparental inheritance of mitochondrial genes in yeast. Molec. gen. Genet. 141, 41–58 (1975b)Google Scholar
  5. Birky, C.W., Jr., Demko, C.A., Perlman, P.S., Strausberg, R.L.: Uniparental inheritance of mitochondrial genes in yeast: dependence on input bias of mitochondrial DNA, and preliminary investigations of the mechanism. Genetics, in press (1977)Google Scholar
  6. Birky, C.W., Jr., Skavaril, R.V.: Maitenance of genetic homogeneity in systems with multiple genomes. Genet. Res. 27, 249–266 (1976)Google Scholar
  7. Callen, D.F.: Recombination and segregation of mitochondrial genes in Saccharomyces cerevisiae. Molec. gen. Genet. 134, 49–63 (1974a)Google Scholar
  8. Callen, D.F.: Segregation of mitochondrially inherited antibiotic resistance genes in zygote cell lineages of Saccharomyces serevisiae. Molec. gen. Genet. 134, 65–76 (1974b)Google Scholar
  9. Coen, D., Deutsch, J., Netter, P., Petrochilo, E., Slonimski, P.P.: Mitochondrial genetics. I. Methodology and phenomenology. Symp. Soc. exp. Biol. 24, 449–496 (1970)Google Scholar
  10. Demko, C.A.: The effects of gene dosage on mitochondrial marker transmission in Saccharomyces cerevisiae. M.Sc. Thesis. The Ohio State University, Columbus (1975)Google Scholar
  11. Dujon, B., Kruszewska, A., Slonimski, P.P., Bolotin-Fukuhara, M., Coen, D.: Mitochondrial genetics X: Effects of UV irradiation on transmission and recombination of mitochondrial genes in Saccharomyces cerevisiae. Molec. gen. Genet. 137, 29–72 (1975)Google Scholar
  12. Dujon, B., Slonimski, P.P.: Mechanisms and rules for transmission, recombination and segregation of mitochondrial genes in Saccharomyces cerevisiae. In: Genetics and biogenesis of chloroplasts and mitochondria (Th. Bücher, W. Neupert, W. Sebald, and S. Werner, eds.), pp. 405–414. Amsterdam: North-Holland Biomedical Press 1976Google Scholar
  13. Dujon, B., Slonimski, P.P., Weill, L.: Mitochondrial genetics. IX: A model for recombination and segregation of mitochondrial genomes in Saccharomyces cerevisiae. Genetics 78, 415–437 (1974)Google Scholar
  14. Forster, J.L., Kleese, R.A.: The segregation of mitochondrial genes in yeast. II. Analysis of zygote pedigrees of drug-resistant X drug-sensitive crosses. Molec. gen. Genet. 139, 341–355 (1975)Google Scholar
  15. Goldthwaite, C.D., Cryer, D.R., Marmur, J.: Effect of carbon source on the replication and transmission of yeast mitochondrial genomes. Molec. gen. Genet. 133, 87–104 (1974)Google Scholar
  16. Grimes, G.W., Mahler, H.R., Perlman, P.S.: Nuclear gene dosage effects on mitochondrial mass and DNA. J. Cell Biol. 61, 565–574 (1974)Google Scholar
  17. Gunge, N.: Effects of elevation of strain-ploidy on transmission and recombination of mitochondrial drug resistance genes in Saccharomyces cerevisiae. Molec. gen Genet. 146, 5–16 (1976)Google Scholar
  18. Kirk, J.T.O., Tilney-Bassett, R.A.E.: The plastids. San Francisco: W.H. Freeman and Company 1967Google Scholar
  19. Linnane, A.W., Saunders, G.W., Gingold, E.B., Lukins, H.B.: The biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 59, 903–910 (1968)Google Scholar
  20. Lukins, H.B., Tate, W.R., Saunders, G.W., Linnane, A.W.: The biogenesis of mitochondria. 26. Mitochondrial recombination: the segregation of parental and recombinant mitochondrial genotypes during vegetative division of yeast. Molec. gen. Genet. 120, 17–25 (1973)Google Scholar
  21. Manning, J.E., Wolstenholme, D.R., Richards, O.C.: Circular molecules associated with chloroplasts of spinanch, Spinacia oleracea. J. Cell Biol. 53, 594–601 (1972)Google Scholar
  22. Michaelis, P.: The investigation of plasmone segregation by the pattern-analysis. Nucleus 10, 1–14 (1967)Google Scholar
  23. Perlman, P.S., Birky, C.W., Jr., Demko, C.A., Strausberg, R.L.: Mitochondrial gene dosage and uniparental inheritance in yeast. In: Genetics and biogenesis of chloroplasts and mitochondria (Th. Bucher, W. Neupert, W. Sebald, and S. Werner, eds.), pp. 405–414. Amsterdam: North-Holland Biomedical Press 1976Google Scholar
  24. Perlman, P.S., Birky, C.W., Jr., Strausberg, R.L.: Segregation of mitochondrial markers in yeast. Methods in Enzymology, in press (1977)Google Scholar
  25. Rank, G.H., Bech-Hansen, N.T.: Somatic segregation, recombination, asymmetrical distribution and complementation tests of cytoplasmically-inherited antibiotic resistance mitochondrial markers in S. cerevisiae. Genetics 72, 1–15 (1972)Google Scholar
  26. Sager, R.: Cytoplasmic Genes and Organelles. New York: Academic Press 1972Google Scholar
  27. Sena, E., Welch, J., Fogel, S.: Nuclear and mitochondrial DNA replication during zygote formation and maturation in yeast. Science 194, 433–435 (1976)Google Scholar
  28. Singer, B., Sager, R., Ramanis, Z.: Chloroplast genetics of Chlamydomonas. III. Closing the circle. Genetics 83, 341–354 (1976)Google Scholar
  29. Strausberg, R.L.: Cellular and partial pedigree analysis of mitochondrial inheritance in Saccharomyces cerevisiae. Ph.D. Thesis, The Ohio State University (1976)Google Scholar
  30. Strausberg, R.L., Perlman, P.S.: Cellular analysis of mitochondrial inheritance in Saccharomyces cerevisiae. Genetics 77, s62-63 (abstr.) (1974)Google Scholar
  31. Strausberg, R.L., Perlman, P.S.: The effect of zygotic bud position on the transmission of mitochondrial genes in Sacharomyces cerevisiae. Submitted for publication (1977)Google Scholar
  32. Thomas, D.Y., Wilkie, D.: Inhibition of mitochondrial synthesis in yeast by erythromycin: cytoplasmic and nuclear factors controlling resistance. Genet. Res. 11, 33–41 (1968)Google Scholar
  33. Waxman, M.F., Eaton, N., Wilkie, D.: Effect of antibiotics on the transmission of mitochondrial factors in Saccharomyces cerevisiae. Molec. gen. Genet. 127, 277–284 (1973)Google Scholar
  34. Wilkie, D., Thomas, D.Y.: Mitochondrial genetic analysis by zygote cell lineages in Saccharomyces cerevisiae. Genetics 73, 368–377 (1973)Google Scholar
  35. Williamson, D.H.: Packaging and recombination of mitochondrial DNA in vegetatively growing yeast cells. In: Genetics, biogenesis and bioenergetics of mitochondria (W. Bandlow, ed.), pp. 117–123. Berlin: Walter D. Gryter 1976Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • C. William BirkyJr.
    • 1
  • Robert L. Strausberg
    • 1
  • Jean L. Forster
    • 2
  • Philip S. Perlman
    • 1
  1. 1.Department of Genetics and Interdepartmental, Developmental Biology ProgramThe Ohio State UniversityColumbusUSA
  2. 2.Department of ZoologyDuke UniversityDurhamUSA

Personalised recommendations