Molecular and General Genetics MGG

, Volume 158, Issue 3, pp 229–237 | Cite as

Chromosome mobilization by the R plasmid R68.45: A tool in Pseudomonas genetics

  • Dieter Haas
  • Bruce W. Holloway
Article

Summary

The conjugative plasmid R68.45 mobilizes the chromosome of Pseudomonas aeruginosa strain PAO from multiple sites located in different chromosome regions. In interrupted matings on the plate, selection for any single marker tested resulted in entry times of 3–5 min. When selection was imposed for two markers linked in R68.45-mediated conjugation, double recombinants appeared after a delay which corresponded approximately to the map distance between the two markers as measured by the sex factor FP2. Thus, R68.45 and FP2 appear to promote chromosome transfer at similar rates, but R68.45, unlike FP2, seems to give non-polarized transfer. R68.45 may be used to estimate map distances between linked markers located in those chromosome regions where other sex factors do not produce enough recombinants to permit accurate measurement of entry times.

In R68.45 matings on the plate, most recombinants inherited short donor chromosome fragments (usually less than 10 min long) and lost the R plasmid during purification. Used like a “large” generalized transducing phage, R68.45 has proved valuable in construction of PAO strains with desired genotypes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J.L., Jollick, J.D.: Transfer and expression of Pseudomonas plasmid RP1 in Caulobacter. J. gen. Microbiol. 99, 325–331 (1977)Google Scholar
  2. Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K-12. Bact. Rev. 40, 116–167 (1976)Google Scholar
  3. Beringer, J.E., Hopwood, D.A.: Chromosomal recombination and mapping in Rhizobium leguminosarum. Nature (Lond.) 264, 291–293 (1976)Google Scholar
  4. Chandler, P.M., Krishnapillai, V.: Characterization of Pseudomonas aeruginosa derepressed R-plasmids. J. Bact. 130, 596–603 (1977)Google Scholar
  5. Chakrabarty, A.M., Holloway, B.W.: Genetic linkage map of Pseudomonas aeruginosa. In: CRC Handbook of Microbiology (A.I. Laskin and H. Lechevalier, eds.), second ed. Cleveland, Ohio: CRC Press (in the press)Google Scholar
  6. Crisona, N.J., Clark, A.J.: Increase in conjugational transmission frequency of nonconjugative plasmids. Science 196, 186–187 (1977)Google Scholar
  7. Curtiss III, R., Renshaw, J.: Kinetics of F transfer and recombinant production in F+xF- matings in Escherichia coli K-12. Genetics 63, 39–52 (1969)Google Scholar
  8. Curtiss III, R., Stallions, D.R.: Probability of F integration and frequency of stable Hfr donors in F+ populations of Escherichia coli K-12. Genetics 63, 27–38 (1969)Google Scholar
  9. Dennison, S., Baumberg, S.: Conjugational behaviour of N plasmids in Escherichia coli K-12. Molec. gen. Genet. 138, 323–331 (1975)Google Scholar
  10. Deonier, R.C., Davidson, N.: The sequence organization of the integrated F plasmid in two Hfr strains of Escherichia coli. J. molec. Biol. 107, 207–222 (1976)Google Scholar
  11. Haas, D., Holloway, B.W., Schamböck, A., Leisinger, T.: The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Molec. gen. Genet. 154, 7–22 (1977)Google Scholar
  12. Hedén, L.-O., Rutberg, L.: R factor-mediated polarized chromosomal transfer in Escherichia coli C. J. Bact. 127, 46–50 (1976)Google Scholar
  13. Hedges, R.W., Jacob, A.E., Crawford, I.P.: Wide ranging plasmid bearing the Pseudomonas aeruginosa tryptophan synthase genes. Nature (Lond.) 267, 283–284 (1977)Google Scholar
  14. Holloway, B.W.: Genetic recombination in Pseudomonas aeruginosa. J. gen. Microbiol. 13, 572–581 (1955)Google Scholar
  15. Holloway, B.W.: Genetics of Pseudomonas. Bact. Rev. 33, 419–443 (1969)Google Scholar
  16. Holloway, B.W., Richmond, M.H.: R factors used for genetic studies in strains of Pseudomonas aeruginosa and their origin. Genet. Res. 21, 103–105 (1973)Google Scholar
  17. Holloway, B.W., Rossiter, H., Burgess, D., Dodge, J.: Aeruginocin tolerant mutants of Pseudomonas aeruginosa. Genet. Res. 22, 239–253 (1974)Google Scholar
  18. Holloway, B.W., Crowther, C., Godfrey, A., Haas, D., Krishnapillai, V., Morgan, A., Watson, J.: Plasmid-chromosome interactions in Pseudomonas aeruginosa. In: Plasmids. Medical and theoretical aspects (S. Mitsuhashi, L. Rosival and V. Krčméry, eds.), pp. 77–87. Prague: Avicenum, Berlin-Heidelberg-New York: Springer 1977Google Scholar
  19. Jacob, A.E., Cresswell, J.M., Hedges, R.W.: Molecular characterization of the P group plasmid R68 and variants with enhanced chromosome mobilizing ability. FEMS Microbiol. Lett. 1, 71–74 (1977)Google Scholar
  20. Johnston, A.W.B., Beringer, J.E.: Chromosomal recombination between Rhizobium species. Nature (Lond.) 267, 611–613 (1977)Google Scholar
  21. Kondorosi, A., Kiss, G.B., Forrai, T., Vincze, E., Banfalvi, Z.: Circular linkage map of Rhizobium meliloti chromosome. Nature (Lond.) 268, 525–527 (1977)Google Scholar
  22. Krishnapillai, V.: A novel transducing phage. Its role in recognition of a possible new host-controlled modification system in Pseudomonas aeruginosa. Molec. gen. Genet. 114, 134–143 (1971)Google Scholar
  23. Lacy, G.H., Leary, J.V.: Plasmid-mediated transmission of chromosomal genes in Pseudomonas glycinea. Genet. Res. 27, 363–368 (1976)Google Scholar
  24. Martinez, J., Clarke, P.H.: R factor mediated gene transfer in Pseudomonas putida. Proc. Soc. gen. Microbiol. 3, 51–52 (1975)Google Scholar
  25. Matsumoto, H., Tazaki, T.: FP5 factor, an undescribed sex factor of Pseudomonas aeruginosa. Jap. J. Microbiol. 17, 409–417 (1973)Google Scholar
  26. Meade, H.M., Signer, E.R.: Genetic mapping of Rhizobium meliloti. Proc. nat. Acad. Sci. (Wash.) 74, 2076–2078 (1977)Google Scholar
  27. Novick, R.P., Clowes, R.C., Cohen, S.N., Curtiss III, R., Datta, N., Falkow, S.: Uniform nomenclature for bacterial plasmids: a proposal. Bact. Rev. 40, 168–189 (1976)Google Scholar
  28. Pemberton, J.M., Holloway, B.W.: Chromosome mapping in Pseudomonas aeruginosa. Genet. Res. 19, 251–260 (1972)Google Scholar
  29. Pemberton, J.M., Holloway, B.W.: A new sex factor for Pseudomonas aeruginosa. Genet. Res. 21, 263–272 (1973)Google Scholar
  30. Pittard, J., Loutit, J.S., Adelberg, E.A.: Gene transfer by F′ strains of Escherichia coli K-12. I. Delay in initiation of chromosome transfer. J. Bact. 85, 1394–1401 (1963)Google Scholar
  31. Sistrom, W.R.: Transfer of chromosomal genes mediated by plasmid R68.45 in Rhodopseudomonas sphaeroides. J. Bact. 131, 526–532 (1977)Google Scholar
  32. Stanisich, V., Holloway, B.W.: Conjugation in Pseudomonas aeruginosa. Genetics 61, 327–339 (1969)Google Scholar
  33. Summers, A.O., Jacoby, G.A.: Plasmid-determined resistance to tellurium compounds. J. Bact. 129, 276–281 (1977)Google Scholar
  34. Towner, K.J., Vivian, A.: RP4 fertility variants in Acinetobacter calcoaceticus. Genet. Res. 28, 301–306 (1976)Google Scholar
  35. Watson, J.M.: Genetic mapping in Pseudomonas aeruginosa strain PAT. Ph.D. thesis, Monash University, Clayton, Australia (1977)Google Scholar
  36. Willetts, N.: The genetics of transmissible plasmids. Ann. Rev. Genet. 6, 257–268 (1972)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Dieter Haas
    • 1
  • Bruce W. Holloway
    • 1
  1. 1.Department of GeneticsMonash UniversityClaytonAustralia

Personalised recommendations