Advertisement

Molecular and General Genetics MGG

, Volume 170, Issue 3, pp 243–247 | Cite as

Fusion of mitochondria with protoplasts in Saccharomyces cerevisiae

  • Norio Gunge
  • Kenji Sakaguchi
Article

Summary

Protoplasts prepared from a neutral petite haploid BO60AF-1 (a ade2 arg4 leu2 trp COEOOO ύO ρO) were mixed with mitochondria isolated from an oligomycin resistant respiring haploid ANROR 12D (a his4 leu2 thr4 CSESO II R ύ+ ρ+) and treated with 30% polythylene glycol and CaCl2. When the treated protoplasts were spread and incubated on selective agar plates, oligomycin resistant respiration-sufficient colonies appeared with low frequency. All of these colonies carried the mitochondrial genotype of CSESO II R ύ+ ρ+ and showed the same mating type and nutritional requirements as did BO60AF-1, thus evidencing the mitochondrial transfer into protoplasts. Recombination and transmission of the mitochondrial drug resistance markers were studied in crosses involving the strains issued from mitochondria accepted protoplasts.

Keywords

Recombination Glycol CaCl2 Drug Resistance Saccharomyces Cerevisiae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahkong, Q.F., Howell, J.I., Lucy, J.S., Safwat, F., Davey, M.R., Cooking, E.C.: Fusion of hen erythrocytes with yeast protoplasts induced by polyethylene glycol. Nature 255, 66–67 (1975)Google Scholar
  2. Anné, J., Peberdy, J.F.: Induced fusion of fungal protoplasts following treatment with polyethylene glycol. J. Gen. Microbiol. 92, 413–417 (1976)Google Scholar
  3. Avner, P.R., Coen, D., Dujon, B., Slonimski, P.P.: Mitochondrial genetics IV. Allelism and mapping studies of oligomycin resistant mutants in S. cerevisiae. Mol. Gen. Genet. 125, 9–52, (1973)Google Scholar
  4. Bolotin, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., Slonimski, P.P.: La recombinaison des mitochondries chez Saccharomyces cerevisiae. Bull. Inst. Pasteur (Paris) 69, 215–239 (1971)Google Scholar
  5. Ferenczy, L., Kevei, F., Szegedi, M., Frankó, A., Rojik, I.: Factors affecting high-frequency fungal protoplast fusion. Experientia 32, 1156–1158 (1976)Google Scholar
  6. Ferenczy, L., Maráz, A.: Transfer of mitochondria by protoplast fusion in Saccharomyces cerevisiae. Nature, 268, 524–525 (1977)Google Scholar
  7. Gunge, N.: Genetic analysis of unequal transmission of the mitochondrial markers in Saccharmoyces cerevisiae. Mol. Gen. Genet. 139, 189–202 (1975)Google Scholar
  8. Gunge, N.: Effects of elevation of strain-ploidy on transmission and recombination of mitochondrial drug resistance genes in Saccharmyces cerevisiae. Mol. Gen. Genet. 146, 5–16 (1976)Google Scholar
  9. Gunge, N., Nakatomi, Y.: Genetic mechanism of rare matings of the yeast Saccharomyces cerevisiae heterozygous for mating type. Genetics 70, 41–58 (1972)Google Scholar
  10. Gunge, N., Tamaru, A.: Genetic analysis of products of protoplast fusion in Saccharomyces cerevisiae. Jap. J. Genet. 53, 41–49 (1978)Google Scholar
  11. Hinnen, A., Hicks, J.B., Fink, G.R.: Transformation of yeast. Proc. Natl. Acad. Sci. U.S.A. 75, 1929–1933 (1978)Google Scholar
  12. Kao, K.N., Michayluk, M.R.: A method of high-frequency intergeneric fusion of plant protoplasts. Planta 115, 355–367 (1974)Google Scholar
  13. Linnane, A.W., Lukins, H.B.: Isolation of mitochondria and techniques for studying mitochondrial biogenesis in yeasts. In: Methods in cell biology, Vol. XII. Yeast cells (ed. D.M. Prescott), pp. 285–309 New York: Academic Press 1975Google Scholar
  14. Lurquin, P.F., Kado, C.I.: Escherichia coli plasmid pBR313 insertion into plant protoplasts and into their nuclei. Mol. Gen. Genet. 154, 113–121 (1977)Google Scholar
  15. Ohyama, K., Gamborg, O.L., Miller, R.A.: Uptake of exogeneous DNA by plant protoplasts. Can. J. Bot. 50, 2077–2080 (1972)Google Scholar
  16. Osumi, M., Katoh, T.: Oxygen-induced formation of mitochondrial membrane matrix in respiration-deficient yeasts. Jap. Wom. Univ. J. 14, 67–70 (1967)Google Scholar
  17. Packer, L., Williams, M.A., Criddle, R.S.: Freeze-fracture studies on mitochondria from wild-type and respiration-deficient yeasts. Biochim. Biophys. Acta 292, 92–104 (1973)Google Scholar
  18. Schaeffer, P., Cami, B., Hotchkiss, R.D.: Fusion of bacterial protoplasts. Proc. Natl. Acad. Sci. U.S.A. 73, 2151–2155 (1976)Google Scholar
  19. Sipiczki, M., Ferenczy, L.: Protoplast fusion of Schizosaccharomyces pombe auxotrophic mutants of identical mating-type. Mol. Gen. Genet. 151 77–81 (1977)Google Scholar
  20. Smith, D.G., Marchant, R., Maroudas, N.G., Wilkie D.: A comparative study of the mitochondrial structure of petite strains of Saccharomyces cerevisiae. J. Gen. Microbiol. 56, 47–54 (1969)Google Scholar
  21. Solingen, P. van, Plaat, J.B. van der. Fusion of yeast spheroplasts. J. Bacteriol. 130, 946–947 (1977)Google Scholar
  22. Stahl, U.: Zygote formation and recombination between like mating types in the yeast Saccharomycopsis lipolytica by protoplast fusion. Mol. Gen. Genet. 160, 111–113 (1978)Google Scholar
  23. Suzuki, M., Takebe, I.: Uptake of single-stranded bacteriophage DNA by isolated tobacco protoplasts. Z. Pflanzenphysiol. 78, 421–433 (1976)Google Scholar
  24. Suzuki, M., Takebe, I., Kajita, S., Honda, Y., Matsui, C.: Endocytosis of polystyrene spheres by tobacco leaf protoplasts. Exp. Cell Res. 105, 127–135 (1977)Google Scholar
  25. Tuppy, H., Wildner, G.: Cytoplasmic transformation: Mitochondria of wild-type baker's yeast restoring respiratory capacity in the respiratory defficient “petite” mutant. Biochem. Biophys. Res. Commun. 20, 733–738 (1965)Google Scholar
  26. Vasil, I.K., Giles, K.L.: Induced transfer of higher plant chloroplasts into fungal protoplasts. Science 190, 680 (1975)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Norio Gunge
    • 1
  • Kenji Sakaguchi
    • 2
  1. 1.Central Research LaboratoriesMitsubishi Chemical IndustriesYokohamaJapan
  2. 2.Mitsubishi-Kasei, Institute of Life SciencesMachida-shi, TokyoJapan

Personalised recommendations