Advertisement

Histochemie

, Volume 13, Issue 2, pp 111–159 | Cite as

Über das Reizleitungssystem der Vögel

Histochemische und elektronenmikroskopische Untersuchungen
  • Reinhart Gossrau
Article

Zusammenfassung

  1. 1.

    Auch bei den Vögeln nimmt das Beizleitungssystem des Herzens eine Sonderstellung ein. Es ist frei von Glykogen bzw. glykogenarm und die meisten nachgewiesenen Fermente haben eine geringere Aktivität als in der Arbeitsmuskulatur. Eine Ausnahmen machen Phosphorylase, Transglucosidase, unspezifische Esterase und saure Phosphatase, die außerdem innerhalb des Reizleitungssystems regionale Aktivitätsunterschiede besitzen. Das Kapillarvorkommen ist im Reizleitungsgewebe geringer als in der Arbeitsmuskulatur. Aus diesen Beobachtungen wird auf Stoffwechselbesonderheiten der spezifischen Muskulatur des Vogelherzens geschlossen.

     
  2. 2.

    Elektronenmikroskopisch zeigt sich, daß die gesamte Reizleitungsmuskulatur der Vögel arm an Myofibrillen und Mitochondrien ist. Kennzeichnend für die periarteriellen Reizleitungsfasern ist vor allem ein ausgedehntes Proteofibrillengeflecht. Das sarkoplasmatische Retikulum besteht nur aus Resten des L-Systems. — Im Purkinjering kommen zwei Faserarten vor: Ringfasern und periannuläre Fasern. Sie unterscheiden sich von den periarteriellen Fasern durch ein relativ vermehrtes Vorkommen von Myofibrillen und Mitochondrien, untereinander vor allem im Verhalten des sarkoplasmatischen Retikulums sowie in der Mikropinozytoseaktivität.

     
  3. 3.

    Die Arbeitsmuskulatur der Vögel besitzt elektronenmikroskopisch und histochemisch artspezifische Eigenarten. Bei Taube und Wellensittich sind die Mitochondrien besonders zahlreich und verfügen über viele Cristae; die Aktivität von Succinodehydrogenase und Cytochromoxidase ist hoch und das sarkoplasmatische Retikulum ist stark entwickelt.

     
  4. 4.

    Die cholinergische Innervation des Sinusknotens zeigt bei den Vögeln große artspezifische Unterschiede. Weniger ausgeprägt ist dies beim AV-System. — In der Arbeitsmuskulatur von Taube und Wellensittich werden echte myoneurale Verbindungen beobachtet.

     

The impulse conducting system of the birds

Histochemical and electron microscopical investigations

Summary

  1. 1.

    The impulse conducting system (ICS) of the heart reveals special characteristics in birds, too. It contains no or very little glycogen, and most enzymes investigated show less activity than in the ordinary cardiac muscle. Exceptions are the activities of phosphorylase, transglucosidase, nonspecific esterase, and acid phosphatase which in addition show regional differences within the ICS. There are less capillaries in the ICS than in ordinary cardiac muscle. From these observations, metabolic peculiarities of the ICS in birds are concluded.

     
  2. 2.

    The electron microscopical investigation shows that myofibrils and mitochondria are scarce in the entire ICS of birds. The periarterial fibers of the ICS are mainly characterized by an extensive network of proteofibrils. The sarcoplasmic reticulum is represented by only scanty tubules of the L-system. — In the Purkinje ring two different kinds of fibers are found. They all differ from the periarterial fibers by containing relatively more myofibrils and mitochondria, they differ from each other mainly by their sarcoplasmic reticulum and their micropinocytotic activities.

     
  3. 3.

    The ordinary cardiac muscle of the birds shows species-dependent electron microscopical and histochemical characteristics. In the pigeon and budgerigar, the mitochondria are especially numerous, and they contain many cristae. The activities of succinate dehydrogenase and cytochrome oxidase are high, and the sarcoplasmic reticulum is well developed.

     
  4. 4.

    The cholinergic innervation of the sinus node shows marked species-dependent differences. These differences are less distinct in the A-V system. — In the ordinary cardiac muscle genuine myoneural connections are observed.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abdullah, M., P. M. Taylor, and W. J. Whelan: The enzymic debranching of glycogen and the role of transferase. In: Ciba Found. Symp. on: Control of glycogen metabolism, p. 123–138. London: J. & A. Churchill, Ltd. 1964.Google Scholar
  2. Abé, T., and N. Shimizu: Histochemical method for demonstrating aldolase. Histochemie 4, 200–212 (1964).Google Scholar
  3. Abraham, A.: Die intramurale Innervation des Vogelherzens. Z. mikr.-anat. Forsch. 69, 195–216 (1962).PubMedGoogle Scholar
  4. — Die mikroskopische Innervation des Herzens und der Blutgefäße von Vertebraten. Ada- démiai Kiadó. Budapest: Verlag der Ungarischen Akademie der Wissenschaften 1964.Google Scholar
  5. — u. L. Erdélyi: Über die Struktur und die Innervation des Reizleitungssystems im Herzen der Säugetiere. Acta biol. Acad. Sci. hung. 3, 275–308 (1957).Google Scholar
  6. — Localization of acetylcholinesterase in the conducting system of ungulata. Acta morph. Acad. Sci. hung. 8, 403–414 (1959).Google Scholar
  7. —, u. A. Stammer: Die mikroskopische Innervation des Vogelherzens. Acta biol. Acad. Sci. hung. 3, 247–273 (1957).Google Scholar
  8. Adolph, E. F.: Capacities for regulation of heart rate in fetal, infant and adult rats. Amer. J. Physiol. 209, 1095–1105 (1965).PubMedGoogle Scholar
  9. —: Ranges of heart rates and their regulation at various ages (rat). Amer. J. Physiol. 212, 595–602 (1967).PubMedGoogle Scholar
  10. —: The heart's pacemaker. Sci. Amer. 216, 3, 32–37 (1967).PubMedCrossRefGoogle Scholar
  11. Alcini, E., A. Lageron et R. Wegmann: Étude histoenzymologique du métabolisme glucidique du faiceau de His à différents niveaux et du myocarde ventriculaire, chez le rat. Ann. Histochim. 10, 127–144 (1965).PubMedGoogle Scholar
  12. Aldrigde, W. N.: Serum esterases. Biochem. J. 53, 110–124 (1953).CrossRefGoogle Scholar
  13. — Some esterases of the rat. Biochem. J. 57, 692–702 (1954).CrossRefGoogle Scholar
  14. Ali, H. J. El. S., A. Antonio, and N. Haugaard: The action of sympathomimetic amines and adrenergic blocking agents on tissue phosphorylase activity. J. Pharmacol. exp. Ther. 145, 142–150 (1964).PubMedGoogle Scholar
  15. Anderson, E.: Oocyte differentiation and vitellogenesis in the roach Periplanta americana. J. Cell Biol. 20, 131–155 (1964).PubMedPubMedCentralCrossRefGoogle Scholar
  16. Andres, K. H.: Mikropinocytose im Zentralnervensystem. Z. Zellforsch. 64, 63–73 (1964).PubMedCrossRefGoogle Scholar
  17. Bahr, G. F., and R. B. Jennings: Ultrastructure of normal and asphyxic myocardium of the dog. Lab. Invest. 10, 548–571 (1961).PubMedGoogle Scholar
  18. Bargmann, W.: Bau des Herzens. In: Das Herz des Menschen (W. Bargmann u. W. Doerr, Hrsg.), Bd. I., S. 88–164. Stuttgart: Georg Thieme 1963.Google Scholar
  19. Barka, T., and P. J. Anderson: Histochemistry. New York-Evanston-London: Harper & Row, Inc. 1963.Google Scholar
  20. Barnett, R. J., and Seligman: Histochemical demonstration of protein-bound alpha-acyl- amido carboxyl groups. J. biophys. biochem. Cytol. 4, 169–176 (1958).CrossRefGoogle Scholar
  21. Bauereisen, E.: Normale Physiologie des Herzens. In: Das Herz des Menschen (W. Barg-mann u. W. Doerr, Hrsg.), Bd. I, S. 313–354. Stuttgart: Georg Thieme 1963.Google Scholar
  22. Baxter, M. J., and R. H. Nisbet: Features of the nervous system and heart of archachatina revealed by the electron microscope and by electrophysiological recording. Proc. Malacolog. Soc. (Lond.) 35, 167–177 (1963).Google Scholar
  23. Bennett, H. S.: The sarcoplasmic reticulum of striped muscle. J. biophys. biochem. Cytol. 2 (Suppl.), 171–174 (1956).PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bernsheimer, A., u. W. Rudolph: Myokardstoffwechsel. Verh. dtsch. Ges. Kreisl.-Forsch. 27, 59–76 (1961).Google Scholar
  25. Best, F.: Über die Karminfärbung des Glykogens und der Kerne. Z. wiss. Mikr. 23, 319–323 (1906).Google Scholar
  26. Bing, R. J.: Der Myokardstoffwechsel. Klin. Wschr. 34, 1–7 (1956).PubMedCrossRefGoogle Scholar
  27. — Neuere Erkenntnisse auf dem Gebiet des Muskelstoffwechsels. In: Struktur und Stoffwechsel des Herzmuskels (H. Hauss u. H. Losse, Hrsg.), S. 31–50. Stuttgart: Georg Thieme 1959.Google Scholar
  28. — Über den Stoffwechsel des intakten Herzens. Verh. dtsch. Ges. Kreisl.-Forsch. 27, 145–166 (1961).Google Scholar
  29. Bing, R. J., A. Siegel, J. Ungar, and M. Gilbert: Metabolism of the human heart. Amer. J. Med. 16, 504–515 (1954).PubMedCrossRefGoogle Scholar
  30. Birks, R., H. E. Huxley, and B. Katz: The fine structure of the neuromuscular junction of the frog. J. Physiol. (Lond.) 150, 134–144 (1960).CrossRefGoogle Scholar
  31. Blair, D. M., and F. Davies: Observations on the conducting system of the heart. J. Anat. (Lond.) 69, 303–324 (1935).Google Scholar
  32. Bompiani, G. D., Ch. Rouiller et P. Y. Hatt: Le tissu de conduction du cœur chez le rat. Étude au microscope électronique. I. Le tronc commun du faisceau de His et les cellules claires de l'oreillette droite. Arch. Mal. Coeur 52, 1257–1274 (1959).PubMedGoogle Scholar
  33. Brandt, P. W.: A study of the mechanism of pinocytosis. Exp. Cell Res. 15, 300–313 (1958).PubMedCrossRefGoogle Scholar
  34. Brown, D. H., B. Illingworth, and C. F. Cori: The mechanism of the de novo synthesis of polysaccharides by phosphorylase. Proc. nat. Acad. Sci. (Wash.) 47, 479 (1961).CrossRefGoogle Scholar
  35. Buadze, S., u. E. Wertheimer: Der Glykogengehalt des Reizleitungssystems im Herzen. Pflügers Arch. ges. Physiol. 219, 233–237 (1928).CrossRefGoogle Scholar
  36. Burstone, M. S.: New histochemical technique for the demonstration of tissue oxidase (cytochrome oxidase). J. Histochem. Cytochem. 7, 112–122 (1959).PubMedCrossRefGoogle Scholar
  37. Caesar, R., G. E. Edwards, and H. Ruska: Electron microscopy of the impulse conducting system of the sheep heart. Z. Zellforsch. 48, 698–719 (1958).PubMedCrossRefGoogle Scholar
  38. Candiollo, L.: The fine structure of the endocardial endothelium. Z. Zellforsch. 61, 486–492 (1963).PubMedGoogle Scholar
  39. Caputto, R., H. S. Barra, and F. A. Cumar: Carbohydrate metabolism. Ann. Rev. Biochem. 36, 211–246 (1967).PubMedCrossRefGoogle Scholar
  40. Carbonell, L. M.: Phosphorylase and conductive system of the heart. J. Histochem. Cytochem. 3, 419 (1955).CrossRefGoogle Scholar
  41. Carruthers, C., and A. Baumler: The influence of various detergents on the esterase and glucose-6-phosphatase activities of mouse liver microsomes. Arch. Biochem. 99, 458–465 (1962).PubMedCrossRefGoogle Scholar
  42. Challice, C. E.: Some observations on the microstructure of the mammalian heart. In: Proc. Symp. on: Muscle (W. M. Paul, E. E. Daniel, C. M. Kay, and G. Monckton, eds.), p. 71–83, 1964. Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press 1965.Google Scholar
  43. — Observations on the specialized fibres of the atrium of the rabbit heart. In: Electron microscopy (R. Uyeda, ed), vol. I, p. 697. Tokyo: Marzuen CO, LTD 1966.Google Scholar
  44. Chapman-Anderson, C.: Pinocytosis of inorganic salts by Amoeba proteus (Chaos diffluens). C.R. Lab. Carlsberg 31, 77–92 (1958).Google Scholar
  45. — Studies on pinocytosis in amoebae. C.R. Lab. Carlsberg 33, 73–264 (1962).Google Scholar
  46. — and Holter: Studies on the ingestion of 14 C glucose by pinocytosis in the amoeba Chaos chaos. Exp. Cell Res. 3 (Suppl.), 52–63 (1955).Google Scholar
  47. Chauveau, J., Y. Moulé, C. Rouiller, and J. Schneebeli: Isolation of smooth vesicles and free ribosomes from rat liver microsomes. J. Cell Biol. 12, 17–30 (1962).PubMedPubMedCentralCrossRefGoogle Scholar
  48. Clark, A. J.: Comparative physiology of the heart. Cambridge: University Press 1927.Google Scholar
  49. Cori, G. T., and C. F. Cori: Crystalline muscle phosphorylase. IV. Formation of glycogen. J. biol. Chem. 151, 57–63 (1943).Google Scholar
  50. Couteaux, R., et P. Laurent: Étude au microscope électronique du coeur de l'anguille: observations sur la structure du tissu musculaire de l'oreillette et son innervation. C.R. Acad. Sci. (Paris) 245, 2097–2100 (1957).Google Scholar
  51. Curtis, H. J., and D. M. Travis: Conduction on Purkinje tissue of the ox heart. Amer. J. Physiol. 165, 173–178 (1951).PubMedGoogle Scholar
  52. David, H.: Ergebnisse und Prinzipien der submikroskopischen Pathomorphologie der Herzmuskulatur. Z. ges. inn. Med. 18, 481–486, 533–545 (1963).PubMedGoogle Scholar
  53. Davies, F.: The conducting system of the bird's heart. J. Anat. (Lond.) 64, 129–146 (1930).Google Scholar
  54. — Further studies of the conducting system of the bird's heart. J. Anat. (Lond.) 64, 317–323 (1930).Google Scholar
  55. —, and E. T. B. Francis: The conduction of impulse for cardiac contraction. J. Anat. (Lond.) 86, 302–309 (1952).Google Scholar
  56. — E. T. B. Francis and T. S. King: Neurological studies of the cardiac ventricles of mammals. J. Anat. (Lond.) 86, 130 (1952).Google Scholar
  57. Doerr, W.: Die Morphologie des Reizleitungssystems, ihre Orthologie und Pathologie. In: Rhythmusstörungen des Herzens (K. Spang, Hrsg.), S. 1–46. Stuttgart: Georg Thieme 1957.Google Scholar
  58. Domagk, G. F., u. R. Zech: Intermediärstoffwechsel der Kohlenhydrate. Neuere Erkenntnisse und ihre medizinische Bedeutung. Hippokrates (Stuttg.) 38, 333–343 (1967).Google Scholar
  59. Draper, M. H., and M. Mya-Tu: A comparison of the conducting velocity in cardiac tissues of various mammals. Quart. J. exp. Physiol. 44, 91 (1959).PubMedCrossRefGoogle Scholar
  60. —, and S. Weidmann: Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. (Lond.) 116, 74–94 (1951).CrossRefGoogle Scholar
  61. Dubowitz, W., and A. G. E. Pearse: A comparative histochemical study of oxidative enzyme and phosphorylase activity in skeletal muscle. Histochemie 2, 105–117 (1960).PubMedCrossRefGoogle Scholar
  62. Dudel, J., and W. Trautwein: Der Mechanismus der automatischen rhythmischen Impulsbildung der Herzmuskelfaser. Pflügers Arch. ges. Physiol. 267, 553–565 (1958).CrossRefGoogle Scholar
  63. Ebashi, S., and F. Lipman: Adenosin triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell Biol. 14, 389–400 (1962).PubMedPubMedCentralCrossRefGoogle Scholar
  64. Eccles, C. N., J. H. Kugler:, and W. J. C. Wilkinson: Glycogen fractions in the conducting system of the ox heart. J. animal. Morph. Physiol. 7, 134–140 (1960).Google Scholar
  65. Engel, W. K., and G. G. Cunningham: Rapid examination of muscle tissue. An improved trichrome method for fresh frozen biopsy sections. Neurology (Minneap.) 13, 919–923 (1963).CrossRefGoogle Scholar
  66. Farquhar, M. G., and G. E. Palade: Functional evidence for the existence of a third cell type in the renal glomerulus. J. Cell Biol. 13, 55–87 (1962).PubMedPubMedCentralCrossRefGoogle Scholar
  67. — S. L. Wissig, and G. E. Palade: Glomerular permeability. I. Ferritin transfer across the normal glomerular wall. J. exp. Med. 113, 47–66 (1961).PubMedPubMedCentralCrossRefGoogle Scholar
  68. Fawcett, D. W.: Surface specialization of absorbing cells. J. Histochem. Cytochem. 13, 75–91 (1965).PubMedCrossRefGoogle Scholar
  69. — and C. C. Selby: Observations on the fine structure of the turtle atrium. J. biophys. biochem. Cytol. 5, 63–72 (1958).CrossRefGoogle Scholar
  70. Field, E. J.: The nervous component of the atrioventricular bundle. J. Anat. (Lond.) 85, 105–112 (1951).Google Scholar
  71. Forssmann, W. G.: Persönliche Mitteilung 1967.Google Scholar
  72. —, u. L. Girardier: Untersuchungen zur Ultrastruktur des Rattenherzmuskels mit besonderer Berücksichtigung des sarkoplasmatischen Retikulums. Z. Zellforsch. 72, 249–275 (1966).PubMedCrossRefGoogle Scholar
  73. Gallo, P.: A study on the topographical and quantitive relations between capillaries and fibres of the conduction system and on their functional significance. Cardiologica (Basel) 29, 241–253 (1956).CrossRefGoogle Scholar
  74. George, J. C., and P. T. Iype: A histochemical study of the atrioventricular bundle (bundle of His) and the myocardium of the sheep heart. J. animal. Morph. Physiol. 7, 78–85 (1960).Google Scholar
  75. Girardier, L., J. J. Dreifuss et W. G. Forssmann: Micropinocytose de ferritine dans les cellules myocardiques de tortue et de rat. Acta anat. (Basel) (im Druck).Google Scholar
  76. Glenner, G. G., H. J. Burtner, and G. W. Brown: The histochemical demonstration of monoamine oxidase activity by tetrazolium salts. J. Histochem. Cytochem. 5, 591–600 (1957).PubMedCrossRefGoogle Scholar
  77. Glomset, D. J., and T. A. Glomset: A morphologic study of the cardiac conduction system in ungulates, dog and man. Part II. The Purkinje system. Amer. Heart J. 20, 677–701 (1940).CrossRefGoogle Scholar
  78. Godlewski, H. G.: Histochemistry of the glycogen synthetase and phosphorylases in normal and pathologic tissues. Acta histochem. (Jena) 4 (Suppl.), 30–51 (1964).Google Scholar
  79. Goerttler, K.: Struktur und Bedeutung der Purkinjefasern im Herzen. Verh. Dtsch. Ges. Kreisl.-Forsch. 27. Tgg. 1960, S. 295–301. Darmstadt: Dr. Dietrich Steinkopff 1961.Google Scholar
  80. Gomori, G.: Microtechnical demonstration of phosphatase in tissue sections. Proc. Soc. exp. Biol. (N.Y.) 42, 23–26 (1939).CrossRefGoogle Scholar
  81. — An improved histochemical technique for acid phosphatase. Stain Technol. 25, 81–85 (1950).CrossRefGoogle Scholar
  82. Gossbau, R.: Topographische und histologisohe Untersuchungen am Reizleitungssystem von Vögeln (in Vorbereitung).Google Scholar
  83. Graumann, W.: Untersuchungen zum cytochemischen Glykogennachweis. I. Mitt. Chemische Fixation auf Alkoholbasis. Acta hiatochem. (Jena) 4, 29–40 (1957).Google Scholar
  84. — Untersuchungen zum cytochemischen Glykogennachweis. II. Mitt. Chemische Fixation auf Pikrinsäurebasis. Histochemie 1, 97–108 (1958).CrossRefGoogle Scholar
  85. Gross, B. G.: Annulate lamellae in the axillary apocrine glands of adult man. J. Ultrastruct. Res. 14, 64–73 (1966).CrossRefGoogle Scholar
  86. Hadek, R., and P. T. Talso: A study of nonmyelynated nerves in the rat and rabbit heart. J. Ultrastruct. Res. 17, 257–265 (1967).PubMedCrossRefGoogle Scholar
  87. Harrison, G. A.: Some observations on the presence of annulate lamellae in alligator and sea gull adrenal cortical cells. J. Ultrastruct. Res. 14, 158–166 (1966).CrossRefGoogle Scholar
  88. Hasselbach, W.: Mechanismen der Muskelkontraktion und ihre intrazelluläre Steuerung. Naturwissenschaften 50, 249–256 (1963).CrossRefGoogle Scholar
  89. —, u. H. W. Weber: Die intrazelluläre Regulation der Muskelaktivität. Naturwissenschaften 52, 121–128 (1965).CrossRefGoogle Scholar
  90. Haugaard, N., and M. E. Hess: The influence of catecholamines on heart function and phosphorylase activity. Pharmacol. Rev. 18, 197–203 (1966).PubMedGoogle Scholar
  91. Hayashi, K.: An electron microscope study on the conduction system of the cow heart. Jap. Circulat. J. (En.) 26, 765–842 (1962).CrossRefGoogle Scholar
  92. Heene, R.: Persönliche Mitteilung 1967.Google Scholar
  93. Hegab, E. H. H., and V. J. Ferrans: A histochemical study of the esterases of the rat heart. Amer. J. Anat. 119, 235–252 (1966).PubMedCrossRefGoogle Scholar
  94. Hess, M. E., J. Shanfeld, and N. Haugaard: The influences of sympathetic activity on rat heart phosphorylase. J. Pharmacol. exp. Ther. 131, 143–146 (1961).PubMedGoogle Scholar
  95. — The role of the autonomic nervous system in the regulation of heart phosphorylase in the openchest rat. J. Pharmacol. exp. Ther. 135, 191–196 (1962).PubMedGoogle Scholar
  96. Hess, R., D. G. Scarpelli, and A. G. E. Pearse: Cytochemical localization of pyridine nucleotide-linked dehydrogenases. Nature (Lond.) 181, 1331–1532 (1958).CrossRefGoogle Scholar
  97. Hirsch, E. F., and A. M. Borghard-Erdle: The innervation of the human heart. I. The coronary arteries and the myocardium. Arch. Path. 71, 384–407 (1961).PubMedGoogle Scholar
  98. — The innervation of the human heart. II. The papillary muscles. Arch. Path. 73, 100–117 (1962).Google Scholar
  99. Hoffmann, B. F.: Physiology of atrioventricular transmission. Circulation 24, 506–517 (1961).CrossRefGoogle Scholar
  100. — P. F. Cranefield, J. H. Stuckey, N. S. Amer, R. R. Cappelletti, and R. T. Domingo: Direct measurement of conduction velocity in — in situ — spezialised conducting system of mammals. Proc. Soc. exp. Biol. (N.Y.) 102, 55–75 (1959).CrossRefGoogle Scholar
  101. Holt, S. J., and R. F. J. Withers: Cytochemical localization of esterase using indoxyl derivates. Nature (Lond.) 170, 1012–1014 (1952).CrossRefGoogle Scholar
  102. Holter, H.: Pinocytosis. Int. Rev. Cytol. 8, 481–504 (1959).PubMedCrossRefGoogle Scholar
  103. —: Physiologie der Pinocytose bei Amoeben. In: Sekretion und Exkretion (K. E. Wohl-Farth-Bottermann, Hrsg.), S. 119–193. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  104. Hotchkiss, R. D.: A microchemical reaction resulting in the staining of polysaccharide structures in fixed tissue preparations. Arch. Biochem. 16, 131–141 (1948).PubMedGoogle Scholar
  105. Hunter, R. L., and M. S. Burstone: The zymogram as a tool for the characterization of enzyme-substrate specifity. J. Histochem. Cytochem. 9, 58–62 (1960).CrossRefGoogle Scholar
  106. Huuer, O. F., and W. Trautwein: Vagal and sympathic effects on the pacemaker fibres in the sinus venosus of the heart. J. gen. Physiol. 39, 175 (1956).Google Scholar
  107. Illingworth, B., D. H. Brown, and C. F. Cori: The de novo synthesis of polysaccharide by phosphorylase. Proc. nat. Acad. Sci. (Wash.) 47, 469–478 (1961).CrossRefGoogle Scholar
  108. Irisawa, A., and K. Hama: Some observations on the fine structure of the mantis shrimp heart. Z. Zellforsch. 68, 674–688 (1965).PubMedCrossRefGoogle Scholar
  109. Jansen, H. H.: Innervation des Herzens. In: Das Herz des Menschen (W. Bargmann u. W. Doerr, Hrsg.), Bd. I, S. 228–259. Stuttgart: Georg Thieme 1963.Google Scholar
  110. Jedeikin, L. A.: Regional distribution of glycogen and phosphorylase in the ventricle of the heart. Circulation Res. 14, 202–211 (1964).PubMedCrossRefGoogle Scholar
  111. Jurgens, H.: Über die Wirkung des Nervus Vagus auf das Herz der Vögel. Pflügers Arch. ges. Physiol. 129, 506–524 (1909).CrossRefGoogle Scholar
  112. Karnowsky, M. J.: Simple methods for “staining with lead” at high pH in electron microscopy. J. biophys. biochem. Cytol. 11, 729–732 (1961).CrossRefGoogle Scholar
  113. —, and L. Roots: A “direct-coloring” thiocholine technique for cholinesterases. J. Histochem. Cytochem. 12, 219–221 (1964).CrossRefGoogle Scholar
  114. Kawamura, K.: Electron microscope studies on the cardiac conducting system of the dog. I. The Purkinje fibers. Jap. Circulat. J. 25, 594–616 (1961).CrossRefGoogle Scholar
  115. —: Electron microscopic studies on the cardiac conducting system of the dog. II. The sinuatrial and the atrioventricular nodes. Jap. Circulat. J. 25, 973–1013 (1961).CrossRefGoogle Scholar
  116. Kern, A.: Das Vogelherz. Untersuchungen an Gallus domesticus Briss. Morph. Jb. 56, 264–313 (1926).Google Scholar
  117. Kessel, R. G.: Electron microscopic studies on the origin and maturation in oocytes of the Tunicate, Ciana intestinalis. Z. Zellforsch. 71, 525–454 (1966).PubMedCrossRefGoogle Scholar
  118. Khanna, R. K.: On the presence of specialized connecting (conducting) tissue in the heart of the Indian blue rock pigeon, Columba livia intermedia Strick. J. animal. Morph. Physiol. (India) 4, 33–42 (1957).Google Scholar
  119. Kisch, B.: New investigations on cardiac nerves. II. Protoaxons in contact with heart muscle fibres of men and animals. An electron microscopic study. Exp. Med. Surg. 18, 169–181 (1960).Google Scholar
  120. —: Electronmicroscopy of the frog's heart. Exp. Med. Surg. 19, 104–142 (1961).PubMedGoogle Scholar
  121. Klingenberg, M.: Muskelmitochondrien. Ergebn. Physiol. 55, 131–189 (1964).PubMedCrossRefGoogle Scholar
  122. Kolmer, W., u. W. Fleischmann: Über den Sauerstoff-Verbrauch der Purkinjeschen Fäden. Pflügers Arch. ges. Physiol. 218, 530–531 (1927).CrossRefGoogle Scholar
  123. Krebs, E. G., and E. H. Fischer: Relationship of structure to function of muscle phosphorylase. Fed. Proc. 25, 1511–1520 (1966).PubMedGoogle Scholar
  124. Kühnel, W.: Elektronenmikroskopische Untersuchungen an den Herzklappen. Experientia (Basel) 21, 535–536 (1965b).CrossRefGoogle Scholar
  125. —: Elektronenmikroskopische Untersuchungen über den unterschiedlichen Bau der Herz- klappen. II. Mitt. Trikuspidalis und Pulmonalklappe. Z. Zellforsch. 72, 462–474 (1966).PubMedCrossRefGoogle Scholar
  126. Külbs, F.: Über das Reizleitungssystem bei Amphibien, Reptilien und Vögeln. Z. exp. Path. Ther. 11, 51–68 (1912).CrossRefGoogle Scholar
  127. Kugler, J. H., and W. J. Wilkinson: A relation between total glycogen content of ox myocardium and its histochemical demonstration. J. Histochem. Cytochem. 7, 398–402 (1959).PubMedCrossRefGoogle Scholar
  128. —: Glycogen fractions and their role in the histochemical detection of glycogen. J. Histochem. Cytochem. 8, 195–199 (1960).PubMedCrossRefGoogle Scholar
  129. —: Quantitative studies with solutions used for the fixation of glycogen. Acta anat. (Basel) 56, 184–195 (1964).CrossRefGoogle Scholar
  130. Leloir, L. F.: Role of uridine diphosphate glucose in the synthesis of glycogen. In: Ciba Found. Symp. on: Control of glycogen metabolism, p. 68–81. London: J. & A. Churchill Ltd. 1964.Google Scholar
  131. —, and S. H. Goldemberg: Synthesis of glycogen from uridine diphosphate glucose in liver. J. biol. Chem. 235, 919–923 (1960).PubMedGoogle Scholar
  132. —, J. M. Olavarria, S. H. Goldemberg, and H. Carminatti: Biosynthesis of glycogen from uridine diphosphate glucose. Arch. Biochem. 81, 508–520 (1959).PubMedCrossRefGoogle Scholar
  133. Lewis, T.: The spread of excitatory process in the vertebrate heart. V. The bird's heart. Philos. Trans. A/B 207, 298 (1915).Google Scholar
  134. Lillie, R. D.: Various oil soluble dyes as fat stains in the supersaturated isopropanol technic. Stain Technol. 19, 55–58 (1944).CrossRefGoogle Scholar
  135. Lindner, E.: Die submikroskopische Morphologie des Herzmuskels. Z. Zellforsch. 45, 702–746 (1957).PubMedGoogle Scholar
  136. Lison, L.: Histochimie animale. Paris: Gauthier-Villars 1936.Google Scholar
  137. Löer: Vergleichende Maße und Proportionalgewichte des Vogelherzens. Pflügers Arch. ges. Physiol. 140, 293–324 (1911).CrossRefGoogle Scholar
  138. Malinowsky, L.: Contribution to the anatomy of the vegetative nervous system in the neck and thorax of domestic pigeon. Acta anat. (Basel) 50, 326–347 (1962).CrossRefGoogle Scholar
  139. Mangold, E.: Erregungsursprung und -leitung im Herzen der Vögel und niederen Wirbeltiere. Dtsch. med. Wschr. 40, 1035–1036 (1914).Google Scholar
  140. —, u. T. Kato: Über den Erregungsursprung im Vogelherzen. Pflügers Arch. ges. Physiol. 157, 1–12 (1914).CrossRefGoogle Scholar
  141. —: Zur vergleichenden Physiologie des Hiss'schen Bündels. III. Mitt. Die atrioventrikuläre Erregungsleitung im Vogelherzen. Pflügers Arch. ges. Physiol. 160, 91–130 (1914).CrossRefGoogle Scholar
  142. Marchand, P.: Über eine Geschwulst aus quergestreiften Muskelfasern mit ungewöhnlichem Gehalt an Glykogen (nebst einigen Bemerkungen über das Glykogen) in einigen fetalen Geweben. Virchows Arch. path. Anat. 100, 42–65 (1885).CrossRefGoogle Scholar
  143. Markert, G. L., and R. L. Hunter: The distribution of esterases in mouse tissues. J. Histochem. Cytochem. 7, 42–49 (1959).PubMedCrossRefGoogle Scholar
  144. Marshall, A. J.: Biology and comparative physiology of birds. New York and London: Academic Press 1960.Google Scholar
  145. Marshall, J. M., and V. T. Nachmias: Cell surface and pinocytosis. J. Histochem. Cytochem. 13, 92–104 (1965).PubMedCrossRefGoogle Scholar
  146. Mayer, S. E., and N. C. Moran: Relation between pharmacologic augmentation of cardiac contractile force and the activation of myocardial glycogen phosphorylase. J. Pharmacol. exp. Ther. 129, 271–281 (1960).Google Scholar
  147. McManus, J. F. A.: Histological and histochemical use of periodic acid. Stain Technol. 23, 99–108 (1948).PubMedCrossRefGoogle Scholar
  148. McNally, E. H.: Heart rate of the domestic fowl. Poultry Sci. 20, 266 (1941).CrossRefGoogle Scholar
  149. Meyer, R. de: Contribution a l'etude du tissu nodal du coeur des oiseaux. Arch. Biol. (Liège) 63, 455–514 (1952).Google Scholar
  150. Michel, G., u. G. Gutte: Zur Ausbildung der Purkinjefasern im Herzen verschiedener Säugetiere und des Huhnes, unter besonderer Berücksichtigung des Glykogenvorkommens. Anat. Anz. 119, 188–195 (1966).Google Scholar
  151. Millonig, G.: A modified procedure for lead staining of thin sections. J. biophys. biochem. Cytol. 11, 736–739 (1961).PubMedPubMedCentralCrossRefGoogle Scholar
  152. Mohr, E., et M. A. Gerebtzoff: Recherches histochimiques sur les acétylcholine et cholin- estérases. Acta anat. (Basel) 22, 143–151 (1954).CrossRefGoogle Scholar
  153. Mohrenschild, H. v.: Histologische und histochemische Untersuchungen am Sinusknoten verschiedener Säugetiere und des Menschen. Inaug.-Diss. Würzburg 1964.Google Scholar
  154. Moore, D. M., and M. Ruska: Electronmicroscopic study of mammalian cardiac muscle cells. J. biophys. biochem. Cytol. 3, 261–268 (1957).PubMedPubMedCentralCrossRefGoogle Scholar
  155. Morales, A. R., and G. Fine: Enzyme histochemistry of the sinus and atrioventricular nodes of the human heart. Lab. Invest. 14, 321–329 (1965).PubMedGoogle Scholar
  156. Moulé, Y.: Cellular membranes in development (M. Locke, ed.), p. 97. London and New York: Academic Press 1964.CrossRefGoogle Scholar
  157. Muir, A. R.: Observations on the fine structure of the Purkinje fibres in the ventricles of the sheep's heart. J. Anat. (Lond.) 91, 251–258 (1957).Google Scholar
  158. Murray, J. B.: Oxygen uptake of atrioventricular conducting tissue of beef heart. Amer. J. Physiol. 177, 463–466 (1954).PubMedGoogle Scholar
  159. Muscatello, U., E. Andersson-Cedergren, and G. P. Azzone: The relaxing effect of the sarcotubular system. Biochim. biophys. Acta (Amst.) 51, 426–428 (1961).CrossRefGoogle Scholar
  160. Nachlas, M. M., D. G. Walker, and A. Seligman: The histochemical localization of triphosphopyridine nucleotide diaphorase. J. biophys. biochem. Cytol. 4, 467–474 (1958).PubMedPubMedCentralCrossRefGoogle Scholar
  161. Nachmias, V. T.: Fibrillar structures in the cytoplasm of Chaos chaos J. Cell Biol. 23, 183–188 (1964).PubMedPubMedCentralCrossRefGoogle Scholar
  162. Naidoo, D., and O. E. Pratt: The localization of some acid phosphatases in brain tissue. J. Neurol. Psychiat. 14, 287–294 (1951).CrossRefGoogle Scholar
  163. Napolitano, L. M., V. L. Willman, C. R. Hanlon, and T. Cooper: Intrinsic innervation of the heart. Amer. J. Physiol. 208, 455–458 (1965).PubMedGoogle Scholar
  164. Nelson, D. A., and E. S. Benson: On the structural continuities of the transverse tubular system of rabbit and human myocardial cells. J. Cell Biol. 16, 297–313 (1963).PubMedPubMedCentralCrossRefGoogle Scholar
  165. Noll, A., u. M. Becker: Der Glykogengehalt der Muskulatur und des Erregungsleitungsgystems des Herzens nach chemischer und mikroskopischer Untersuchung. Virchows Arch. path. Anat. 296, 443–451 (1936).CrossRefGoogle Scholar
  166. Novikoff, A. B., and S. Goldfischer: Nucleosidediphosphatase activity in the golgi apparatus and its usefulness for oytological studies. Proc. nat. Aead. Sci. (Wash.) 47, 802–810 (1961).CrossRefGoogle Scholar
  167. — and N. Quintana: Golgi apparatus and lysosomes. Fed. Proc. 23, 1023–1025 (1964).Google Scholar
  168. Odor, L.: Uptake and transfer of particulate matter from the peritoneal cavity of the rat. J. biophys. biochem. Cytol. 2 (Suppl.), 105–108 (1956).PubMedPubMedCentralCrossRefGoogle Scholar
  169. Ohmori, S.: Anatomische und entwicklungsgeschichtliche Untersuchungen über das Atrioventrikularverbindungssystem des Vogelherzens. Fukuoka Acta med. 21, 3–5 (1928).Google Scholar
  170. Olavarría, J. M.: The metabolism of oligosaccharides. J. biol. Chem. 235, 3058–3060 (1960).PubMedGoogle Scholar
  171. Opitz, E., u. D. Lübbers: Allgemeine Physiologie der Zell- und Gewebsatmung. In: Handbuch der Allgemeinen Pathologie (F. Büchner u. E. Letterer, Hrsg.), Bd. IV/2/IIa, S. 395–496. Berlin-Göttingen-Heidelberg: Springer 1957.Google Scholar
  172. Oppenheimer, E.: Elektrokardiographische Studien an kleinen Warmblütern. Z. ges. exp. Med. 28, 96–105 (1922).CrossRefGoogle Scholar
  173. Otsuka, N., T. Hara u. H. Okamoto: Histotopochemische Untersuchungen am Reizleitungs system des Hundeherzens. Histochemie 10, 66–73 (1967).PubMedCrossRefGoogle Scholar
  174. Padykula, H. A., and E. Herman: Factors affecting the activity of adenosin triphosphatase and other phosphatases as measured by histochemical techniques. J. Histochem. Cytochem. 3, 161–169 (1955).PubMedCrossRefGoogle Scholar
  175. Palade, G. E.: The fine structure of mitochondrion. Anat. Rec. 114, 427–451 (1952).PubMedCrossRefGoogle Scholar
  176. Palay, S. L.: Alveolate vesicles in the Purkinje cells of rat's cerebellum. J. Cell Biol. 19, 89–90 (1963).Google Scholar
  177. Pappas, G. D., and P. W. Brandt: Mitochondria. I. Fine structure of the complex patterns in the mitochondria of Pelomyxa carolinensis Wilson (Chaos chaos L.). J. biophys. biochem. Cytol. 6, 85–90 (1959).PubMedPubMedCentralCrossRefGoogle Scholar
  178. Parrot, C.: Über die Größenverhältnisse des Herzens bei Vögeln. Zool. Jb. 7, 496 (1894).Google Scholar
  179. Parsons, D. F.: A simple method for obtaining increased contrast in araldite sections by using postfixation staining of tissues with potassium permanganat. J. biophys. biochem. Cytol. 11, 492–496 (1961).PubMedPubMedCentralCrossRefGoogle Scholar
  180. Paton, N. D.: On the extrinsic nerves of the heart of the bird. J. Physiol. (Lond.) 45,106–114 (1912).CrossRefGoogle Scholar
  181. Pearse, A. G. E.: Histochemistry, 2nd ed. London: J. & A. Churchill, Ltd. 1960.Google Scholar
  182. Pittoni, A., e L. Gotte: Alcuni confronti fra il metabolismo del miocardio e del suo tessuto di conduzione. I. II quoziente respiratorio, la glicolisi anaerobia e il contenuto in cocarbossilasi. Arch. Sci. biol. (Bologna) 37, 525–532 (1953).Google Scholar
  183. Poche, R.: Zur mikroskopischen Morphologie des Reizleitungssystems beim Kalb. Düsseldorf 15. 4. 1956 (im Anschluß an die 40. Tagg dtsch. Ges. Path.).Google Scholar
  184. Prakash, R.: The heart and its conducting system in the common Indian fowl. Proc. nat. Inst. Sci. India B 22, 22–27 (1956).Google Scholar
  185. Price, A., B. Eide, M. Prinzmetal, and C. Carpenter: Ultrastructure of the dog cardiac muscle cell. Circulat. Res. 7, 858–865 (1959).PubMedCrossRefGoogle Scholar
  186. Rall, T. W., and E. W. Sutherland: Formation of a cyclic adenine ribonucleotide by tissue particles. J. biol. Chem. 232, 1065–1076 (1958).PubMedGoogle Scholar
  187. —, and W. D. Wosilait: The relationship of epinephrine and glucagon to liver phosphorylase. J. biol. Chem. 218, 483–495 (1956).PubMedGoogle Scholar
  188. Rawat, A. S.: The atrio-ventricular bundle (bundle of His) in the heart of Columba livia Strick (Indian blue rock pigeon). Sci. and Culture (Calcutta) 22, 278–279 (1956).Google Scholar
  189. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).PubMedPubMedCentralCrossRefGoogle Scholar
  190. Rhodin, J. A. G., P. Del Missier, and L. C. Reid: The structure of the specialized impulse-conducting system of the steer heart. Circulation 24, 349–367 (1961).CrossRefGoogle Scholar
  191. Romeis, B.: Mikroskopische Technik. München: R. Oldenburg 1948.Google Scholar
  192. Rosenbluth, J., and S. L. Wissig: The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J. Cell Biol. 23, 307–325 (1964).PubMedPubMedCentralCrossRefGoogle Scholar
  193. Roth, T. F., and K. R. Porter: Spezialized sites on the cell surface for protein uptake. In: 5th Int. Congr. Electr. Microsc. (S. S. Breese, ed.), vol. II, p. U-4. New York and London: Academic Press 1962.Google Scholar
  194. — Yolk protein uptake in the oocyte of mosquito Aedes aegypti L. J. Cell Biol. 20, 313–332 (1964).PubMedPubMedCentralCrossRefGoogle Scholar
  195. Rouiller, Ch., et W. G. Forssmann: Notions actuelles sur l'ultrastructure du muscle squelettique et cardiaque. Verh. schweiz. naturforsch. Ges. 145, 171–177 (1965).Google Scholar
  196. Ruska, H., and G. A. Edwards: A new cytoplasmic pattern in straited muscle fibres and its possible relation to growth. Growth 21, 73–88 (1957).PubMedGoogle Scholar
  197. —, and R. Caesar: A concept of intracellular transmission of excitation by means of the endoplasmic reticulum. Experientia (Basel) 14, 117–120 (1958).CrossRefGoogle Scholar
  198. Ruthmann, A.: Methoden der Zellforschung. Stuttgart: Pranckhsche Verlagsbuchhandlung 1966.Google Scholar
  199. Scheer, A. M.: Direct recording from the A-V conducting system in the dog and monkey. Science 121, 398 (1955).CrossRefGoogle Scholar
  200. Schiebler, Th. H.: Herzstudie. I. Mitt. Histochemische Untersuchungen der Purkinje- fasern von Säugern. Z. Zellforsch. 39, 152–167 (1953).PubMedCrossRefGoogle Scholar
  201. — Herzstudie. II. Mitt. Histologische, histochemische und experimentelle Untersuchungen am Artrioventrikularsystem von Huf- und Nagetieren. Z. Zellforsch. 43, 243–306 (1955).PubMedCrossRefGoogle Scholar
  202. — Über den histochemischen Nachweis von Atmungsfermenten im Reizleitungssystem. Anat. Anz. 111 (Erg.-Heft), 103–112 (1963).Google Scholar
  203. —, u. W. Doerr: Orthologie des Reizleitungssystems. In: Das Herz des Menschen (W. Bargmann u. W. Doerr, Hrsg.), Bd. I, S. 165–227. Stuttgart: Georg Thieme 1963.Google Scholar
  204. —, u. A. Knoop: Möglichkeiten der Mikrospektrographie für Gewebeuntersuchungen. Anat. Anz. 101 (Erg.-Heft), 48–55 (1954).Google Scholar
  205. — M. Starck u. R. Caesar: Die Stoffwechselsituation des Reizleitungssystems. Klin. Wschr. 34, 181–183 (1956).PubMedCrossRefGoogle Scholar
  206. —, u. H. H. Wolff: Elektronenmikroskopische Untersuchungen am Herzmuskel der Ratte während der Entwicklung. Z. Zellforsch. 69, 22–40 (1966).PubMedCrossRefGoogle Scholar
  207. Schmidt, W.: Licht- und elektronenmikroskopische Untersuchungen über die intrazelluläre Verarbeitung von Vitalfarbstoffen. Z. Zellforsch. 58, 573–637 (1962).PubMedCrossRefGoogle Scholar
  208. Scholtyseck, E.: Elektronenmikroskopisch-cytochemischer Nachweis von Glykogen bei Eimeria perforans. Z. Zellforsch. 64, 688–707 (1964).PubMedCrossRefGoogle Scholar
  209. Schrader, P., and C. Leuchtenberger: A cytochemical analysis of the functional interrelation of various cell structures in Arvelius albopunctatus (de Geer). Exp. Cell Res. 1, 421–452 (1950).CrossRefGoogle Scholar
  210. Schumaker, W. N.: Uptake of protein from solution by Amoeba proteus. Exp. Cell Res. 15, 314–331 (1958).PubMedCrossRefGoogle Scholar
  211. Schumann, H.: Der Muskelstoffwechsel des Herzens. Darmstadt: Dr. Dietrich Steinkopff 1950.CrossRefGoogle Scholar
  212. Sie, Hsien-Gieh, J. Ashmore, R. Mahler, and W. H. Fischman: Liver glucosyl, oligo- saccharides and glycogen; carbon-14 dioxide experiments with hydrocortisone. Nature (Lond.) 184, 1380–1381 (1959).CrossRefGoogle Scholar
  213. —, and W. H. Fischman: Liver glucosyl, oligosaccharides and glycogen; effects of starvation, glucose feeding and insuline. Nature (Lond.) 182, 240–242 (1958).CrossRefGoogle Scholar
  214. Simpson, F. O., and S. J. Oertels: The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system. J. Cell Biol. 12, 91–100 (1962).PubMedPubMedCentralCrossRefGoogle Scholar
  215. Singh, T.: Histological study of the specialized tissue of the avian heart. Proc. Sci. India 24, 140–144 (1958).Google Scholar
  216. Slautterback, D. B.: Mitochondria in cardiac muscle cells of the canary and some other birds. J. Cell Biol. 24, 1–21 (1965).PubMedPubMedCentralCrossRefGoogle Scholar
  217. Smith, D. S.: The structure of flight muscle sarcosomes in the blowfly Calliphora erythrocephala (Diptera). J. Cell Biol. 19, 115–138 (1963).PubMedPubMedCentralCrossRefGoogle Scholar
  218. Ssinelnikow, R.: Die Herznerven der Vögel. Z. Anat. Entwickl.-Gesch. 86, 540–563 (1928).CrossRefGoogle Scholar
  219. — Das intramurale Nervensystem des Vogelherzens. Z. Anat. Entwickl.-Gesch. 86, 563–578 (1928).CrossRefGoogle Scholar
  220. Staubesand, J.: Zur Histophysiologie des Herzbeutels. II. Elektronenmikroskopische Untersuchungen über die Passage von Metallsolen durch mesotheliale Membranen. Z. Zellforsch. 58, 915–952 (1963).PubMedCrossRefGoogle Scholar
  221. —, u. W. Schmidt: Zur Histophysiologie des Herzbeutels. I. Elektronenmikroskopische Beobachtungen an den Deckzellen des Peri- und Epikards. Z. Zellforsch. 58, 55–68 (1960).CrossRefGoogle Scholar
  222. Stöhr jr., Ph Mikroskopische Anatomie des vegetativen Nervensystems. In: Handbuch der mikroskopischen Anatomie des Menschen (W. v. Möllendorf u. W. Bargmann, Hrsg.), Bd. 4/1 (Erg.-Band). Berlin-Göttingen-Heidelberg: Springer 1957.Google Scholar
  223. Stotler, W. A., and R. A. McMahon: The innervation and structure of the conductive system of the human heart. J. comp. Neurol. 87, 57–83 (1947).PubMedCrossRefGoogle Scholar
  224. Stübel, H. S.: Beiträge zur Kenntnis der Physiologie des Blutkreislaufes bei verschiedenen Vogelarten. Pflügers Arch. ges. Physiol. 135, 249–265 (1910).CrossRefGoogle Scholar
  225. Sturkie, P. D.: Avian physiology, 2nd ed. New York: Ithaca 1965.Google Scholar
  226. —, J. A. Vogel, and K. Textor: Cardiovascular differences between high and low blood pressure chickens. Poultry Sci. 41, 1619 (1962).CrossRefGoogle Scholar
  227. Szent-Gyöbgyi, G.: Proteins of myofibril. In: The structure and function of muscle (G. H. Bourne, ed.), vol. II, p. 1–54. New York and London: Academic Press 1960.Google Scholar
  228. Takeuchi, T.: Histochemical demonstration of branching enzyme (amylo-1,4 → 1,6-trans-glucosidase) in animal tissues. J. Histochem. Cytochem. 6, 208–216 (1958).PubMedCrossRefGoogle Scholar
  229. —, and G. G. Glenner: Histochemical demonstration of a pathway for polysaccharide synthesis from uridine diphosphoglucose. J. Histochem. Cytochem. 8, 227–230 (1960).PubMedCrossRefGoogle Scholar
  230. —, and H. Kuriaki: Histochemical detection of phosphorylase in animal tissue. J. Histochem. Cytochem. 3, 153–160 (1955).PubMedCrossRefGoogle Scholar
  231. Tang, E. A.: Beiträge zum feineren Bau der Purkinjefasern im Herzen der Vögel. Anat. Anz. 55, 385–399 (1922).Google Scholar
  232. Tcheng, K. T.: Histologic study of cardiac innervation of the dog. C.R. Soc. Biol. (Paris) 144, 882 (1950).Google Scholar
  233. — Innervation of the dog's heart. Amer. Heart J. 41, 512 (1951).PubMedCrossRefGoogle Scholar
  234. Themann, H.: Elektronenoptische Untersuchungen über das Glykogen im Zellstoffwechsel. Stuttgart: Gustav Fischer 1963.Google Scholar
  235. Tigeestedt, R.: Physiologie des Kreislaufes, Bd. II. Berlin u. Leipzig: W. de Gruyter & Co. 1921.Google Scholar
  236. Thoenes, W., u. H. Ruska: Über „leptomere” Myofibrillen in der Herzmuskelzelle. Z. Zellforsch. 51, 560–570 (1960).PubMedCrossRefGoogle Scholar
  237. Toth, A., u. Th. H. Schiebler: Über die Entwicklung der Arbeits- und Erregungsleitungs- muskulatur des Herzens von Ratte und Meerschweinchen. Histologische, histochemische und elektrophysiologische Untersuchungen. Z. Zellforsch. 76, 543–567 (1967).PubMedCrossRefGoogle Scholar
  238. Trautwein, W.: Physiologie der Herzirregularitäten. In: Rhythmusstörungen des Herzens. (K. Spang, Hrsg.). Stuttgart: Georg Thieme 1957.Google Scholar
  239. —, and K. Uchizono: Electron microscopy and electrophysiologic study of the pacemaker in the sinuatrial node of the rabitt heart. Z. Zellforsch. 61, 96–109 (1963).PubMedCrossRefGoogle Scholar
  240. Trump, F. B.: An electron microscope study of the uptake, transport and storage of colloidal materials by the cells of the vertebrate nephron. J. Ultrastruct. Res. 5, 291–310 (1961).PubMedCrossRefGoogle Scholar
  241. Vincent, N. H., and S. Ellis: Inhibitory effects of acetylcholine on glycogenolysis in the isolated guinea-pig heart. J. Pharmacol. exp. Ther. 139, 60–68 (1963).PubMedGoogle Scholar
  242. Virägh, S., et A. Porte: Le noeud de Keith et Flack et les différentes fibres auriculaires du coeur de rat. C.R. Acad. Sci. (Paris) 251, 2086–2088 (1960).Google Scholar
  243. — Structure fine du tissu vecteur dans le coeur de rat. Z. Zellforsch. 55, 263–281 (1961).PubMedCrossRefGoogle Scholar
  244. — Elements nerveux intracardiaques et innervation du myocarde. Z. Zellforsch. 55, 282–296 (1961).PubMedCrossRefGoogle Scholar
  245. Vogel, J. A., and P. D. Sturkie: Effects of starvation on the cardiovascular system of the chicken. Proc. Soc. exp. Biol. (N.Y.) 112, 111 (1963).CrossRefGoogle Scholar
  246. Wachstein, M., and E. Meisel: On the histochemical demonstration of glucose-6-phosphatase. J. Histochem. Cytochem. 4, 592 (1956).CrossRefGoogle Scholar
  247. —: Histochemistry of hepatic phosphatases at a physiological pH with specific reference to the demonstration of bile canaliculi. Amer. J. clin. Path. 27, 13–23 (1957).CrossRefGoogle Scholar
  248. Watson, M. C.: Staining of tissue sections for electron microscopy with heavy metals. J. biophys. biochem. Cytol. 4, 475–478 (1958).PubMedPubMedCentralCrossRefGoogle Scholar
  249. Wearn, J. T.: The extent of the capillary bed of the heart. J. exp. Mod. 47, 273–292 (1928).CrossRefGoogle Scholar
  250. Wegmann, R., E. Alcini, and A. Lageron: Comparative histoenzymology of the Purkinje fibres (main branch and bifurkation) and the myocardial fibres of rats. Acta anat. nip- ponica 40, 418–422 (1965).Google Scholar
  251. Wischnitzer, S.: Observations of the annulate lamellae of immature amphibian oocytes. J. biophys. biochem. Cytol. 8, 558–563 (1960).PubMedPubMedCentralCrossRefGoogle Scholar
  252. Wohlfarth-Bottermann, K. E.: Cell structures and their significance for ameboid move- ment. Int. Rev. Cytol. 16, 61–125 (1964).PubMedCrossRefGoogle Scholar
  253. - Persönliche Mitteilung 1967.Google Scholar
  254. Wood, W. A.: Carbohydrate metabolism. Ann. Rev. Biochem. 35, 521–558 (1966).PubMedCrossRefGoogle Scholar
  255. Woodbury, R. A., and W. F. Hamilton: Blood pressure studies in small animals. Amer. J. Physiol. 119, 663–674 (1937).Google Scholar
  256. Woollard, H. H.: The innervation of the heart. J. Anat. (Lond.) 60, 345 (1926).Google Scholar
  257. Yamasaki, K.: Biochemical studies in the atrioventricular functional system of heart. II. The metabolic activity. J. Biochem. 12, 223–234 (1930).Google Scholar
  258. —: Biochemical studies in the atrioventricular functional system of the heart. IV. Studies on the anaerobic oxydation of the atrioventricular junctional system. J. Biochem. 12, 241–246 (1930).Google Scholar
  259. Yasuma, A., and T. Ichikawa: Ninhydrin-Schiff and Alloxan-Schiff staining. A new histochemical staining method for protein. J. Lab. clin. Med. 41, 296–299 (1953).PubMedGoogle Scholar
  260. Yousuf, N.: The conducting system of the heart of house sparrow, Passer domesticus indicus. Anat. Rec. 152, 235–250 (1965).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Reinhart Gossrau
    • 1
  1. 1.Anatomisches Institut der Universität WhürzburgDeutschland

Personalised recommendations