Theoretical and Applied Genetics

, Volume 72, Issue 6, pp 761–769 | Cite as

Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms

  • T. Helentjaris
  • M. Slocum
  • S. Wright
  • A. Schaefer
  • J. Nienhuis
Article

Summary

Genetic linkage maps were constructed for both maize and tomato, utilizing restriction fragment length polymorphisms (RFLPs) as the source of genetic markers. In order to detect these RFLPs, unique DNA sequence clones were prepared from either maize or tomato tissue and hybridized to Southern blots containing restriction enzyme-digested genomic DNA from different homozygous lines. A subsequent comparison of the RFLP inheritance patterns in F2 populations from tomato and maize permitted arrangement of the loci detected by these clones into genetic linkage groups for both species.

Key words

Restriction fragment length polymorphisms Genetic linkage maps Zea maysLycopersicon species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson E (1945) What is Zea mays. Chron Bot 9:88–92Google Scholar
  2. Beckett JB (1978) B-A translocations in maize. 1. Use in locating genes by chromosome arms. J Hered 69:27–36Google Scholar
  3. Beckmann JS, Soller M (1983) Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor Appl Genet 67:35–43Google Scholar
  4. Botstein D, White R, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331Google Scholar
  5. Burr B, Evola S, Burr FA, Beckmann JS (1983) The application of restriction fragment polymorphisms to plant breeding. In: Setlow JK, Hollaender A (eds) Genetic engineering principles and methods, vol 5. Plenum Press, New York London, pp 45–59Google Scholar
  6. Emerson RA, Beadle GW, Fraser AC (1935) A summary of linkage studies in maize. NY Cornell Exp Stn Mem 180:1–83Google Scholar
  7. Goldberg RB, Galau GA, Britton RJ, Davidson EH (1973) Nonrepetitive DNA sequence representation in sea urchin messenger RNA. Proc Natl Acad Sci USA 70:3516–3520Google Scholar
  8. Grunstein M, Hogness D (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72:3961–3965Google Scholar
  9. Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25:263–269Google Scholar
  10. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguichi AY, Young AB, Shoulson I, Bonilla E, Martin JB (1983) A polymorphic DNA marker linked to Huntington's disease. Nature 306:238–244Google Scholar
  11. Helentjaris T, Gesteland R (1983) Evaluation of random cDNA clones as probes for human restriction fragment polymorphisms. J Mol Appl Genet 2:237–247Google Scholar
  12. Helentjaris T, King G, Slocum M, Siedenstrang C, Wegman S (1985) Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol Biol 5:109–118Google Scholar
  13. Helentjaris T, Weber D, Wright S (1986) Use of monosomics to map cloned DNA fragments in maize. Proc Natl Acad Sci USA (in press)Google Scholar
  14. Helentjaris T, Wright S, Weber D (1986) Construction of a genetic linkage map in maize using restriction fragment polymorphisms. Maize Genet Coop Newslett 60:118–120Google Scholar
  15. Little P, Annison G, Darling S, Williamson R, Cambar T, Model B (1980) Model for antenatal diagnosis of Bthalassemia and other monogenic disorders by molecular analysis of linked DNA polymorphisms. Nature 285:144–147Google Scholar
  16. Maniatis T, Jeffrey A, Kleid DG (1975) Nucleotide sequence of the rightward operator of phage lambda. Proc Natl Acad Sci USA 72:1184–1188Google Scholar
  17. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, p 377Google Scholar
  18. Mather K (1951) In: The measurement of linkage in heredity, 2nd edn. Wiley and Sons, London, pp 46–57Google Scholar
  19. Phillips J, Panny S, Kazazian H, Bochun C, Scott C, Smith R (1980) Prenatal diagnosis of sickle cell anemia by restriction endonuclease analysis: HindIII polymorphisms in vglobin genes extend applicability. Proc Natl Acad Sci USA 77:2853–2856Google Scholar
  20. Polans NO, Weeden NF, Thompson WF (1985) Inheritance, organization, and mapping of rbcS and cab multigene families in pea. Proc Natl Acad Sci USA 82:5083–5087Google Scholar
  21. Rhoades MM (1950) The effect of the bronze locus on anthocyanin formation in maize. Am Nat 86:105–108Google Scholar
  22. Rhoades MM (1951) Duplicate genes in maize. Am Nat 85:105–110Google Scholar
  23. Rivin CJ, Zimmer EA, Cullis CA, Walbot V, Huynh T, Davis RW (1983) Evaluation of genomic variability at the nucleic acid level. Plant Mol Biol Rep 1:9–16Google Scholar
  24. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018Google Scholar
  25. Sheridan WF (1982) Maps, markers, and stocks. In: Sheridan WF (ed) Maize for biological research. University of N. Dakota Press, Grand Forks, pp 27–32Google Scholar
  26. Slocum M, Helentjaris T, Schaefer A, Wright S, Nienhuis J (1985) Construction of genetic linkage maps in plants utilizing restriction fragment polymorphisms as markers. Abstr 1st Int Congr Plant Mol Biol, p 17Google Scholar
  27. Tanksley S (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8Google Scholar
  28. Tanksley SD, Bernatsky R (1985) Molecular markers in plant breeding. Crop Sci Am 1985 Agron Meeting Abstr 25:136Google Scholar
  29. Weber D (1982) Using maize monosomics to locate genes to specific chromosomes. In: Maize for biological research. University N. Dakota Press, Grand Focks, pp 79–84Google Scholar
  30. Zamir D, Tanksley SD, Jones RA (1982) Haploid selection for low temperature tolerance of tomato pollen. Genetics 101:129–137Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • T. Helentjaris
    • 1
  • M. Slocum
    • 1
  • S. Wright
    • 1
  • A. Schaefer
    • 1
  • J. Nienhuis
    • 1
  1. 1.NPISalt Lake CityUSA

Personalised recommendations