Molecular and General Genetics MGG

, Volume 232, Issue 3, pp 335–343 | Cite as

The lysozyme locus in Drosophila melanogaster: different genes are expressed in midgut and salivary glands

  • Per Kylsten
  • Deborah A. Kimbrell
  • Sirlei Daffre
  • Christos Samakovlis
  • Dan Hultmark


As part of a study of the genes involved in antibacterial defense in Drosophila melanogaster, we have isolated genomic clones harboring a family of chicken-type lysozyme genes, using a lepidopteran lysozyme cDNA as probe. The locus was mapped to the cytological location 61F1-4 on the third chromosome and two of the genes at this locus, LysD and LysP, were analyzed in detail. In contrast to the bacteria-induced lysozymes in the hemolymph of many insects, the transcription levels of both Drosophila genes decrease after bacterial injections into the hemocoel. Apparently, these gene products, like the specifically adapted lysozymes in mammalian foregut fermenters, have been recruited for the digestion of bacteria present in fermenting food. The LysD gene is expressed in an anterior section of the midgut during all feeding stages of development in both larvae and adults. The LysP gene is only active in the adult where it is expressed in the salivary glands. The transcription units for both genes are very compact and they lack introns. Lysozyme D is unusual in that it is predicted to have an acidic isoelectric point whereas lysozyme P appears to be a typical basic lysozyme.

Key words

Antibacterial Digestion Drosophila Gene family Lysozyme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akam M (1983) The location of Ultrabithorax transcripts in Drosophila tissue sections. EMBO J 2:2075–2084Google Scholar
  2. Akam M, Martínez-Arias A (1985) The distribution of Ultrabithorax transcripts in Drosophila embryos. EMBO J 4:1689–1700Google Scholar
  3. Begon M (1982) Yeasts and Drosophila. In: Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics and biology of Drosophila, vol 3b. Academic Press, London, pp 345–384Google Scholar
  4. Bodenstein D (1950) The postembryonic development of Drosophila. In: Demerec M (ed) Biology of Drosophila. John Wiley and Sons, New York, pp 275–367Google Scholar
  5. Boman HG, Hultmark D (1987) Cell-free immunity in insects. Annu Rev Microbiol 41:103–126Google Scholar
  6. Boman HG, Nilsson I, Rasmuson B (1972) Inducible antibacterial defence system in Drosophila. Nature 237:232–235Google Scholar
  7. Breathnach R, Chambon P (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383Google Scholar
  8. Browne WJ, North ACT, Phillips DC, Brew K, Vanaman TC, Hill RL (1969) A possible three-dimensional structure of bovine α-lactalbumin based on that of hen's egg-white lysozyme. J Mol Biol 42:65–86Google Scholar
  9. Chung LP, Keshav S, Gordon S (1988) Cloning the human lysozyme cDNA: inverted Alu repeat in the mRNA and in situ hybridization for macrophages and Paneth cells. Proc Natl Acad Sci USA 85:6227–6231Google Scholar
  10. Davis CA, Riddell DC, Higgins MJ, Holden JJ, White BN (1985) A gene family in Drosophila melanogaster coding for trypsin-like enzymes. Nucleic Acids Res 13:6605–6619Google Scholar
  11. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395Google Scholar
  12. Doane WW, Thompson DB, Norman RA, Hawley SA (1990) Molecular genetics of a three-gene cluster in the Amy region of Drosophila. Prog Clin Biol Res 344:19–48Google Scholar
  13. Dobson DE, Prager EM, Wilson AC (1984) Stomach lysozymes of ruminants. I. Distribution and catalytic properties. J Biol Chem 259:11607–11616Google Scholar
  14. Engström Å, Xanthopoulos KG, Boman HG, Bennich H (1985) Amino acid and cDNA sequences of lysozyme from Hyalophora cecropia. EMBO J 4:2119–2122Google Scholar
  15. Espinoza-Fuentes FP, Terra WR (1987) Physiological adaptations for digesting bacteria. Water fluxes and distribution of digestive enzymes in Musca domestica larval midgut. Insect Biochem 17:809–817Google Scholar
  16. Filshie BK, Poulson DF, Waterhouse DF (1971) Ultrastructure of the copper-accumulating region of the Drosophila midgut. Tissue Cell 3:77–102Google Scholar
  17. Flyg C, Dalhammar G, Rasmuson B, Boman HG (1987) Insect immunity. Inducible antibacterial activity in Drosophila. Insect Biochem 17:153–160Google Scholar
  18. Gilman M (1987) Ribonuclease protection assay. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. John Wiley and Sons, New York, pp 4.7.1–4.7.8Google Scholar
  19. Go M (1983) Modular structural units, exons, and function in chicken lysozyme. Proc Natl Acad Sci USA 80:1964–1968Google Scholar
  20. Hafen E, Levine M (1986) The localization of RNAs in Drosophila sections by in situ hybridization. In: Roberts DB (ed) Drosophila: a practical approach. IRL Press, Oxford, pp 139–157Google Scholar
  21. Hafen E, Levine M, Garber RL, Gehring WJ (1983) An improved in situ hybridization method for the detection of cellular RNAs in Drosophila tissue sections and its application for localizing transcripts of the homeotic Antennapedia gene complex. EMBO J 2:617–623Google Scholar
  22. Henikoff S, Wallace JC (1988) Detection of protein similarities using nucleotide sequence databases. Nucleic Acids Res 16:6191–6204Google Scholar
  23. Hultmark D, Klemenz R, Gehring WJ (1986) Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell 44:429–438Google Scholar
  24. Jollès P, Jollès J (1984) What's new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem 63:165–189Google Scholar
  25. Kaiser K, Murray NE (1985) The use of phage lambda replacement vectors in the construction of representative genomic libraries. In: Glover DM (ed) DNA cloning: a practical approach, vol 1. IRL Press, Oxford, pp 1–47Google Scholar
  26. Kylsten P, Samakovlis C, Hultmark D (1990) The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J 9:217–224Google Scholar
  27. Lefevre G Jr (1976) A photographic representation and interpretation of the polytene chromosomes of Drosophila melanogaster salivary glands. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila, vol 1a. Academic Press, London, pp 31–66Google Scholar
  28. Maniatis T, Hardison RC, Lacy E, Lauer J, O'Connell C, Quon D, Sim GK, Efstratiadis A (1978) The isolation of structural genes from libraries of eukaryotic DNA. Cell 15:687–701Google Scholar
  29. Martin M, Mettling C, Giangrande A, Ruiz C, Richards G (1989) Regulatory elements and interactions in the Drosophila 68C glue gene cluster. Dev Genet 10:189–197Google Scholar
  30. McGinnis W, Levine MS, Hafen E, Kuroiwa A, Gehring WJ (1984) A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308:428–433Google Scholar
  31. Miller A (1950) The internal anatomy and histology of the imago of Drosophila melanogaster. In: Demerec M (ed) Biology of Drosophila. John Wiley and Sons, New York, pp 420–534Google Scholar
  32. Mohrig W, Messner B (1968a) Immunreaktionen bei Insekten I. Lysozym als grundlegender antimikrobieller Faktor im humoralen Abwehrmechanismus der Insekten. Biol Zentralbl 87:439–470Google Scholar
  33. Mohrig W, Messner B (1968b) Immunreaktionen bei Insekten II. Lysozym als antimikrobielles Agens im Darmtrakt von Insekten. Biol Zentralbl 87:705–718Google Scholar
  34. Pardue ML (1986) In situ hybridization to DNA of chromosomes and nuclei. In: Roberts DB (ed) Drosophila: a practical approach. IRL Press, Oxford, pp 111–137Google Scholar
  35. Proudfoot NJ, Brownlee GG (1976) 3′ Non-coding region sequences in eukaryotic messenger RNA. Nature 263:211–214Google Scholar
  36. Robertson M, Postlethwait JH (1986) The Immoral antibacterial response of Drosophila adults. Dev Comp Immunol 10:167–179Google Scholar
  37. Samakovlis C, Kimbrell DA, Kylsten P, Engström Å, Hultmark D (1990) The immune response in Drosophila: pattern of cecropin expression and biological activity. EMBO J 9:2969–2976Google Scholar
  38. Samakovlis C, Kylsten P, Kimbrell DA, Engström Å, Hultmark D (1991) The Andropin gene and its product, a male-specific antibacterial peptide in Drosophila melanogaster. EMBO J 10:163–169Google Scholar
  39. Snyder M, Davidson N (1983) Two gene families clustered in a small region of the Drosophila genome. J Mol Biol 166:101–118Google Scholar
  40. Stewart CB, Schilling JW, Wilson AC (1987) Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330:401–404Google Scholar
  41. Strasburger M (1932) Ban, Funktion, und Variabilität des Darmtraktes von Drosophila melanogaster Meigen. Z wiss Zool 140:539–649Google Scholar
  42. Sun S-C, Åsling B, Faye I (1991) Organization and expression of the immunoresponsive lysozyme gene in the giant silk moth, Hyalophora cecropia. J Biol Chem 266:6644–6649Google Scholar
  43. Terra WR (1990) Evolution of digestive systems of insects. Annu Rev Entomol 35:181–200Google Scholar
  44. Wicker C, Reichhart J-M, Hoffmann D, Hultmark D, Samakovlis C, Hoffmann JA (1990) Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 265:22493–22498Google Scholar
  45. Yun Y, Davis RL (1989) Levels of RNA from a family of putative serine protease genes are reduced in Drosophila melanogaster dunce mutants and are regulated by cyclic AMP. Mol Cell Biol 9:692–700Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Per Kylsten
    • 1
  • Deborah A. Kimbrell
    • 1
  • Sirlei Daffre
    • 1
  • Christos Samakovlis
    • 1
  • Dan Hultmark
    • 1
  1. 1.Department of Molecular BiologyStockholm UniversityStockholmSweden

Personalised recommendations