Applied Microbiology and Biotechnology

, Volume 29, Issue 4, pp 400–407 | Cite as

Comparison of ligninolytic activities of selected white-rot fungi

  • Roland Waldner
  • Matti S. A. Leisola
  • Armin Fiechter
Environmental Microbiology


Six fast growing ligninolytic white-rot fungi were compared with Phanerochaete chrysosporium. The results showed that the fungi have similar ligninolytic systems, although minor differences exist. Like in P. chrysosporium the ligninolytic system could be induced by veratryl alcohol in Coriolus versicolor and Chrysosporium pruinosum. These three lignin peroxidase producing fungi were the fastest lignin degraders in stationary cultures, whereas in agitated cultures Bjerkandera adusta showed highest lignin degradation rates. Metabolites accumulating during the degradation of veratryl alcohol were analyzed and compared. Peroxidase production seems to be a common feature of all the tested fungi. Polyclonal antibodies against the lignin peroxidase with pl of 4.65 from P. chrysosporium reacted with the extracellular peroxidases of C. pruinosum, C. versicolor and B. adusta, but not with those of Pleurotus ostreatus.


Lignin Polyclonal Antibody Degradation Rate Pleurotus Lignin Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agosin E, Daudin J-J, Odier E (1985) Screening of white-rot fungi on (14C) lignin-labelled and (14C) whole labelled wheat straw. Appl Microbiol Biotechnol 22:132–138Google Scholar
  2. Ander P, Eriksson K-E (1975) Influence of carbohydrates on lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Svensk Papperstidn 78:643–652Google Scholar
  3. Ander P, Eriksson K-E (1978) Lignin degradation and utilization by micro-organisms. In: Bull MJ (ed): Progress in industrial microbiology, Vol. 14. Elsevier, Amsterdam, pp 1–58Google Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  5. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436Google Scholar
  6. Bursdall HH, Eslyn WE (1974) A new Phanerochaete with a chrysosporium imperfect state. Mycotaxon 1:123–133Google Scholar
  7. Chua MGS, Chen C-L, Chang H-M, Kirk TK (1982) 13C NMR spectroscopic study of spruce lignin degraded by Phanerochaete chrysosporium. Holzforschung 36:165–172Google Scholar
  8. Crawford RL, Robinson LE, Foster RD (1981) Polyguaiacol: A useful model polymer for lignin biodegradation research. Appl Env Microbiol 41:1112–1116Google Scholar
  9. Dodson APJ, Harvey PJ, Evans CS, Palmer JM (1986) Properties of an extracellular ligninase from Coriolus versicolor. In: Biotechnology in the Pulp and Paper Industry; The third international conference, Stockholm, June 16–19, AbstractsGoogle Scholar
  10. Dodson APJ, Evans CS, Harvey PJ, Palmer JM (1987) Production and properties of an extracellular peroxidase from Coriolus versicolor which catalyses Cα-Cβ cleavage in a lignin model compound. FEMS Microbiol Lett 42:17–22Google Scholar
  11. Eriksson K-E, Ander P, Pettersson B (1986) Regulation of lignin degradation in Phanerochaete chrysosporium. In: Biotechnology in the Pulp and Paper Industry; The third international conference, Stockholm, June 16–19, AbstractsGoogle Scholar
  12. Farmer VC, Moira E, Henderson K, Russell JD (1960) Aromatic-alcohol-oxidase activity in the growth medium of Polystictus versicolor. Biochem 74:257–262Google Scholar
  13. Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Env Microbiol 45:1741–1747Google Scholar
  14. Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2 requiring enzyme preparation involved in lignin biodegradation by the white-rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Comm 114:1077–1083Google Scholar
  15. Haemmerli SD, Leisola MSA, Fiechter A (1986) Polymerisation of lignins by ligninases from Phanerochaete chrysosporium. FEMS Microbiol Lett 35:33–36Google Scholar
  16. Haemmerli SD, Schoemaker HE, Schmidt HWH, Leisola MSA (1987) Oxidation of veratryl alcohol by the lignin peroxidase of Phanerochaete chrysosporium: Involvement of activated oxygen. FEBS Lett 220:149–154Google Scholar
  17. Harvey PJ, Schoemaker HE, Palmer JM (1986) Veratryl alcohol as a mediator and the role of radical cations in lignin degradation by Phanerochaete chrysosporium. FEBS Lett 195:242–246Google Scholar
  18. Hatakka AI, Tervilä-Wilo A (1985) Ligninases of white-rot fungi. In: Proceedings of Soviet-Finnish Seminar on microbial degradation of lignocellulose raw materials, Tbilisi, October 29–31, pp 65–74Google Scholar
  19. Hatakka AI, Tervilä-Wilo A, Niku-Paavola M-L (1986) Production and properties of ligninases of the white-rot fungus Phlebia radiata. In: Proceedings of the 3rd Int Conference on Biotechnology in the Pulp and Paper Industry, Stockholm, June 16–19, pp 154–156Google Scholar
  20. Janshekar H, Haltmeier T, Brown C (1982) Fungal degradation of pine and straw alkali lignins. Eur J Appl Microbiol Biotechnol 14:174–181Google Scholar
  21. Jeffries TW, Choi S, Kirk TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Env Microbiol 42:290–296Google Scholar
  22. Kantelinen A, Waldner R, Niku-Paavola M-L, Leisola M (1988) Comparison of two lignin degrading fungi: Phlebia radiata and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 28:193–198Google Scholar
  23. Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201Google Scholar
  24. Keyser P, Kirk TK, Zeikus JG (1978) Ligninolytic enzyme system of Phanerochaete chrysosporium: Synthesized in absence of lignin in response to nitrogen starvation. J Bacteriol 135:790–797Google Scholar
  25. Kirk TK, Connors WJ, Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by two wood rotting fungi. Appl Env Microbiol 32:192–194Google Scholar
  26. Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RL (1986) Production of multiple ligninases by Phanerochaete chrysosporium: Effect of selected growth conditions and use of a mutant strain. Enz Microbial Technol 8:27–32Google Scholar
  27. Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250Google Scholar
  28. Leatham GF, Crawford RL, Kirk TK (1983) Degradation of phenolic compounds and ring cleavage of catechol by Phanerochaete chrysosporium. Appl Env Microbiol 46:191–197Google Scholar
  29. Leisola MSA, Fiechter A (1985) Ligninase production in agitated conditions by Phanerochaete chrysosporium. FEMS Microbiol Lett 29:33–36Google Scholar
  30. Leisola MSA, Ulmer D, Haltmeier T, Fiechter A (1983) Rapid solubilization and depolymerization of purified kraft lignin by thin layers of Phanerochaete chrysosporium. Europ J Appl Microbiol Biotechnol 17:117–120Google Scholar
  31. Leisola MSA, Ulmer DC, Waldner R, Fiechter A (1984) Role of veratryl alcohol in lignin degradation by Phanerochaete chrysosporium. J Biotechnol 1:331–339Google Scholar
  32. Leisola MSA, Schmidt B, Thanei-Wyss U, Fiechter A (1985) Aromatic ring cleavage of veratryl alcohol by Phanerochaete chrysosporium. FEBS Lett 189:267–270Google Scholar
  33. Leisola MSA, Kozulic B, Meussdoerfer F, Fiechter A (1987) Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium. J Biol Chem 262:419–424Google Scholar
  34. Lobarzewski J, Trojanowski J, Wojtas-Wasilewska M (1982) The effects of fungal peroxidase on Na-lignosulfonates. Holzforschung 36:173–176Google Scholar
  35. Nielsen BL, Brown LR (1984) The basis for colored silver-protein complex formation in stained polyacrylamide gels. Anal Biochem 141:311–315Google Scholar
  36. Nobles MK (1948) Studies in forest pathology. IV Identification of cultures of wood-rotting fungi. Can J Res 26:281–431Google Scholar
  37. Odier E, Monties B (1978) Biodégradation de la lignine de blé par Xanthomonas 23. Ann Microbiol (Inst. Pasteur) 129A:361–377Google Scholar
  38. Setliff EC, Eudy CC (1980) Screening white-rot fungi for their capacity to delignify wood. In: Kirk TK, Higuchi T, Chang H-M (eds) Lignin biodegradation: Microbiology, chemistry, and potential applications. CRC Press, Boca Raton, Florida, Vol. 1, pp 135–149Google Scholar
  39. Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663Google Scholar
  40. Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of a unique H2O2-requiring oxygenase. Proc Nat Acad Sci USA 81:2280–2284Google Scholar
  41. Ulmer DC, Leisola MSA, Schmidt BH, Fiechter A (1983) Rapid degradation of isolated lignins by Phanerochaete chrysosporium. Appl Env Microbiol 45:1795–1801Google Scholar
  42. Ulmer DC, Leisola MSA, Fiechter A (1984) Possible induction of the ligninolytic system of Phanerochaete chrysosporium. J Biotechnol 1:13–24Google Scholar
  43. Waldner R, Leisola MSA, Fiechter A (1986) Production of extracellular ligninolytic enzymes by different withe-rot fungi. In: Biotechnology in the Pulp and Paper Industry; The third international conference, Stockholm June 16–19, AbstractGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Roland Waldner
    • 1
  • Matti S. A. Leisola
    • 1
  • Armin Fiechter
    • 1
  1. 1.Institut für BiotechnologieETH-HönggerbergZürichSchweiz

Personalised recommendations