Acta Informatica

, Volume 7, Issue 2, pp 197–216 | Cite as

Optimal multiprogramming

  • Peter J. Denning
  • Kevin C. Kahn
  • Jacques Leroudier
  • Dominique Potier
  • Rajan Suri


Three heuristics for controlling the multiprogramming load to maximize system work capacity are studied. Each allows the highest load possible subject to a given constraint. The knee criterion constrains the memory policy so that program resident sets average near the knees of their inter page fault lifetime curves. The L=S criterion constrains the memory policy or load so that the system inter page fault lifetime L is at least as large as page swap time S. The 50 % criterion constrains the load so that the paging device is busy approximately half the time. Numerical evaluations of queueing networks show that the knee criterion, which is the most difficult to implement, is the most robust, while the easily implemented 50 % criterion is the least robust. These evaluations also circumscribe the conditions under which the criteria are expected to work reliably. Examples from practical systems further validate the criteria. Stability problems are examined.


Information System Operating System Data Structure Communication Network Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, M. C., Millard, G. E.: Performance measurements on the Edinburgh Multi Access System (EMAS). Proc. ICS 75, Antibes, June 1975Google Scholar
  2. 2.
    Bard, Y.: Application of the page survival index (PSI) to virtual memory system performance. IBM J. R and D 19, 212–220 (1975)Google Scholar
  3. 3.
    Brandwajn, A., Buzen, J., Gelenbe, E., Potier, D.: A model of performance for virtual memory systems. Proc. ACM SIGMETRICS Symposium, October 1974, p.9Google Scholar
  4. 4.
    Belady, L. A.: Biased replacement algorithms for multiprogramming. IBM T. J. Watson Research Center, Yorktown Heights (N.Y.), Note NC697, March 1967Google Scholar
  5. 5.
    Belady, L. A., Kuehner, C. J.: Dynamic space sharing in computer systems. Comm. ACM 12, 282–288 (1969)Google Scholar
  6. 6.
    Brandwajn, A., Gelenbe, E., Lenfant, J., Potier, D.: A model of program and system behavior in virtual memory. Technical report, IRIA-Laboria, Rocquencourt, France, October 1973Google Scholar
  7. 7.
    Badel, M., Gelenbe, E., Leroudier, J., Potier, D.: Adaptive optimization of a time sharing system's performance. Proc. IEEE 63, 958–965 (1975)Google Scholar
  8. 8.
    Brandwajn, A.: A model of a time sharing virtual memory system solved using equivalence and decomposition methods. Acta Informatica 4, 11–47 (1974)Google Scholar
  9. 9.
    Brinch Hansen, P.: Operating systems principles. Englewood Cliffs (N.J.): Prentice-Hall 1973Google Scholar
  10. 10.
    Buzen, J. P.: Analysis of system bottlenecks using a queueing network model. Proc. ACM SIGOPS Workshop on System Performance Evaluation, April 1971, p. 82–103Google Scholar
  11. 11.
    Buzen, J. P.: Computational algorithms for closed queueing networks with exponential servers. Comm. ACM 16, 527–531 (1973)Google Scholar
  12. 12.
    Buzen, J. P.: Cost effective analytic tools for computer performance evaluation. Proc. IEEE Compcon Conl, Sept. 1975, p. 293–296Google Scholar
  13. 13.
    Buzen, J. P.: Fundamental operational laws of computer system performance. Acta Informatica, 7, 167–182 (1976)Google Scholar
  14. 14.
    Coffman, E. G., Denning, P. J.: Operating system theory. Englewood Cliffs (N.J.): Prentice-Hall 1973Google Scholar
  15. 15.
    Corbato, F. J., Dagget, M. M., Daley, R. C.: An experimental time sharing system. Proc. AFIPS 1962 SJCC 21, p. 279–294. Also in: Rosen, S. (ed.): Programming systems and languages. New York: McGraw-Hill 1967Google Scholar
  16. 16.
    Chu, W. W., Opderbeck, H.: The page fault frequency replacement algorithm. Proc. AFIPS 1972 FJCC 41, p. 597–609Google Scholar
  17. 17.
    Courtois, P. J.: On the near-complete-decomposability of networks of queues and of stochastic models of multiprogrammed computer systems. Sci. Rpt. CMU-CS-71-11, Carnegie-Mellon University, November 1971Google Scholar
  18. 18.
    Courtois, P. J.: Decomposability, instabilities, and saturation in a multiprogrammed computer. Comm. ACM 18, 371–377 (1975)Google Scholar
  19. 19.
    Denning, P. J.: The working set model for program behavior. Comm. ACM 11, 323–333 (1968)Google Scholar
  20. 20.
    Denning, P. J.: Thrashing: Its causes and prevention. Proc. AFIPS 1968 FJCC 33, p. 915–922Google Scholar
  21. 21.
    Denning, P. J.: Equipment configuration in balanced computer systems. IEEE Trans. Computers C-18, 1008–1012 (1969)Google Scholar
  22. 22.
    Denning, P.J.: Third generation computer systems. Computing Surveys 3, 175–216 (1971)Google Scholar
  23. 23.
    Denning, P. J., Graham, G. S.: Multiprogrammed memory management. Proc. IEEE 63, 924–939 (1975)Google Scholar
  24. 24.
    Denning, P. J., Kahn, K.: A study of program locality and lifetime functions. Proc. 5th ACM Symp. on Operating System Principles November 1975, p. 207–216Google Scholar
  25. 25.
    Denning, P. J., Kahn, K.: An L=S criterion for optimal multiprogramming. Proc. Int'l Symp. on Computer Performance Modeling, Measurement and Evaluation ACM-SIGMETRICS and IFIP WG7.3, Cambridge (Mass.), March 1976, p. 219–229Google Scholar
  26. 26.
    Easton, M. C., Fagin, R.: Cold start vs. warm start miss ratios and multiprogramming performance. IBM T. J. Watson Research Center, Yorktown Heights (N.Y.), Report RC 5715, November 1975Google Scholar
  27. 27.
    Leroudier, J., Potier, D.: Principles of optimality for multiprogramming. Proc. Int'l Symp. on Computer Performance Modeling, Measurement and Evaluation ACM-SIGMETRICS and IFIP WG7.3, Cambridge (Mass.), March 1976, p. 211–218Google Scholar
  28. 28.
    Madison, W., Batson, A. P.: Characteristics of program localities. Comm. ACM 19, 258–294 (1976)Google Scholar
  29. 29.
    Morris, J. B.: Demand paging through the use of working sets on the Maniac II. Comm. ACM 15, 867–872. (1972)Google Scholar
  30. 30.
    Muntz, R. R.: Analytic modeling of interactive systems Proc. IEEE 63, 946–953 (1975)Google Scholar
  31. 31.
    Muntz, R. R., Wong, J.: Asymptotic properties of closed queueing network models. Proc. 8th Princeton Conf. on Info. Scis, and Systs, Department of Electrical Engeering Princeton University, March 1974Google Scholar
  32. 32.
    Parent, M., Potier, D.: A note on the influence of program loading on the page fault rate. Technical Report, IRIA-Laboria, Rocquencourt, France, February 1976Google Scholar
  33. 33.
    Prieve, B. G.: Using page residency to determine the working set parameter. Comm. ACM 16, 619–620 (1973)Google Scholar
  34. 34.
    Rodriguez-Rosell, J., Dupuy, J. P.: The evaluation of a time sharing page demand system. Proc. AFIPS 1972 SJCC 40, p. 759–765Google Scholar
  35. 35.
    Rodriguez-Rosell, J., Dupuy, J. P.: The design, implementation, and evaluation of a working set dispatcher. Comm. ACM 17, 247–253 (1973)Google Scholar
  36. 36.
    Saltzer, J. H.: A simple linear model of demand paging performance. Comm. ACM 17, 181–185 (1974)Google Scholar
  37. 37.
    Sekino, A.: Performance evaluation of a multiprogrammed time shared computer system. MIT Project MAC, Rpt MAC-TR-103 Ph. D. Thesis, September 1972Google Scholar
  38. 38.
    Weizer, N., Oppenheimer, G.: Virtual memory management in a paging environment. Proc. AFIPS 1969 SJCC 34, p. 234Google Scholar
  39. 39.
    Wulf, W. A.: Performance monitors for multiprogramming systems. Proc. 2nd ACM Symp. on Operating Systems Princepels., October 1969, p.175–181Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Peter J. Denning
    • 1
  • Kevin C. Kahn
    • 1
  • Jacques Leroudier
    • 2
  • Dominique Potier
    • 2
  • Rajan Suri
    • 3
  1. 1.Computer Science DepartmentPurdue UniversityWest LafayetteUSA
  2. 2.IRIA-Laboria Domaine de Voluceau, RocquencourtLe ChesnayFrance
  3. 3.Division of EngineeringHarvard UniversityCambridgeUSA

Personalised recommendations