Molecular and General Genetics MGG

, Volume 154, Issue 1, pp 7–22 | Cite as

The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa

  • Dieter Haas
  • Bruce W. Holloway
  • Anton Schamböck
  • Thomas Leisinger
Article

Summary

Six loci coding for arginine biosynthetic enzymes in Pseudomonas aeruginosa strain PAO were identified by enzyme assay: argA (N-acetylglutamate synthase), argB (N-acetylglutamate 5-phosphotransferase), argC (N-acetylglutamate 5-semialdehyde dehydrogenase), argF (anabolic ornithine carbamoyltransferase), argG (argininosuccinate synthetase), and argH (argininosuccinase). One-step mutants which had a requirement for arginine and uracil were defective in carbamoylphosphate synthase, specified by a locus designated car. To map these mutations we used the sex factor FP2 in an improved interrupted mating technique as well as the generalized transducing phages F116L and G101. We confirmed earlier studies, and found no clustering of arg and car loci. However, argA, argH, and argB were mapped on a short chromosome segment (approx. 3 min long), and argF and argG were cotransducible, but not contiguous.

N-Acetylglutamate synthase, the enzyme which replenishes the cycle of acetylated intermediates in ornithine synthesis of Pseudomonas, appears to be essential for arginine synthesis since argA mutants showed no growth on unsupplemented minimal medium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K-12. Bact. Rev. 40, 116–167 (1976)Google Scholar
  2. Baumberg, S.: Genetic control of arginine metabolism in prokaryotes. In: Second International Symposium on the Genetics of Industrial Microorganisms (K.D. Macdonald, ed.), pp. 369–389. London: Academic Press 1976Google Scholar
  3. Calhoun, D.H., Pierson, D.L., Jensen, R.A.: The regulation of tryptophan biosynthesis in Pseudomonas aeruginosa. Molec. gen. Genet. 121, 117–132 (1973)Google Scholar
  4. Carey, K.E., Krishnapillai, V.: Location of prophage H90 on the chromosome of Pseudomonas aeruginosa strain PAO. Genet. Res. 23, 155–164 (1974)Google Scholar
  5. Carey, K.E., Krishnapillai, V.: Chromosomal location of prophage J51 in Pseudomonas aeruginosa strain PAO. Genet. Res. 25, 179–187 (1975)Google Scholar
  6. Clarke, P.H., Ornston, L.N.: Metabolic pathways and regulation. In: Genetics and biochemistry of Pseudomonas (P.H. Clarke and M.H. Richmond, eds.), pp. 191–340. London: J. Wiley & Son 1975Google Scholar
  7. Condon, S., Collins, J.K., O'Donovan, G.A.: Regulation of arginine and pyrimidine biosynthesis in Pseudomonas putida. J. gen. Microbiol. 92, 375–383 (1976)Google Scholar
  8. Crawford, I.P.: Gene rearrangements in the evolution of the tryptophan synthetic pathway. Bact. Rev. 39, 87–120 (1975)Google Scholar
  9. Day, M., Potts, J.R., Clarke, P.H.: Location of genes for the utilization of acetamide, histidine and proline on the chromosome of Pseudomonas aeruginosa. Genet. Res. 25, 71–78 (1975)Google Scholar
  10. Degryse, E.: Evidence that yeast acetylornithinase is a carboxypeptidase. FEBS Lett. 43, 285–288 (1974)Google Scholar
  11. Dunn, N.W., Holloway, B.W.: Transduction and host controlled modification. The role of the phage. In: Informative molecules in biological systems (L.G.H. Ledoux, ed.), pp. 223–233. Amsterdam: North-Holland Publishing Company 1971Google Scholar
  12. Fargie, B., Holloway, B.W.: Absence of clustering of functionally related genes in Pseudomonas aeruginosa. Genet. Res. 6, 284–299 (1965)Google Scholar
  13. Feary, T.W., Williams, B., Calhoun, D.H., Walker, T.A.: An analysis of arginine requiring mutants in Pseudomonas aeruginosa. Genetics 62, 673–686 (1969)Google Scholar
  14. Haas, D., Holloway, B.W.: R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Molec. gen. Genet. 144, 243–251 (1976)Google Scholar
  15. Haas, D., Kurer, V., Leisinger, T.: N-Acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. Europ. J. Biochem. 31, 290–295 (1972)Google Scholar
  16. Haas, D., Leisinger, T.: Multiple control of N-acetylglutamate synthetase from Pseudomonas aeruginosa: synergistic inhibition by N-acetylglutamate and polyamines. Biochem. biophys. Res. Commun. 60, 42–47 (1974)Google Scholar
  17. Haas, D., Leisinger, T.: N-Acetylglutamate 5-phosphotransferase of Pseudomonas aeruginosa. Purification and ligand-directed association-dissociation. Europ. J. Biochem. 52, 365–375 (1975a)Google Scholar
  18. Haas, D., Leisinger, T.: N-Acetylglutamate 5-phosphotransferase of Pseudomonas aeruginosa. Catalytic and regulatory properties. Europ. J. Biochem. 52, 377–383 (1975b)Google Scholar
  19. Heumann, W., Pühler, A., Wagner, E.: The two transfer regions of the Rhizobium lupini conjugation. I. Fertility factor elimination and one way transfer. Molec. gen. Genet. 113, 308–315 (1971)Google Scholar
  20. Holloway, B.W.: Genetics of Pseudomonas. Bact. Rev. 33, 419–433 (1969)Google Scholar
  21. Holloway, B.W.: Genetic organization of Pseudomonas. In: Genetics and biochemistry of Pseudomonas (P.H. Clarke and M.H. Richmond, eds.), pp. 133–161. London: J. Wiley & Son 1975Google Scholar
  22. Holloway, B.W., van de Putte, P.: Lysogeny and bacterial recombination. In: Replication and recombination of genetic material (W.J. Peacock and R.D. Brock, eds.), pp. 175–183. Australian Academy of Science 1968Google Scholar
  23. Isaac, J.H., Holloway, B.W.: Control of arginine biosynthesis in Pseudomonas aeruginosa. J. gen. Microbiol. 73, 427–438 (1972)Google Scholar
  24. Kageyama, M.: Genetic mapping of a bacteriocinogenic factor in Pseudomonas aeruginosa. I. Mapping of pyocin R2 factor by conjugation. J. gen. appl. Microbiol. 16, 523–530 (1970)Google Scholar
  25. Krishnapillai, V.: A novel transducing phage. Its role in recognition of a possible new host-controlled modification system in Pseudomonas aeruginosa. Molec. gen. Genet. 114, 134–143 (1971)Google Scholar
  26. Legrain, C., Halleux, P., Stalon, V., Glansdorff, N.: The dual genetic control of ornithine carbamoyltransferase in Escherichia coli. A case of bacterial hybrid enzymes. Europ. J. Biochem. 27, 93–102 (1972)Google Scholar
  27. Leisinger, T., Haas, D., Hegarty, M.P.: Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim. biophys. Acta (Amst.) 262, 214–219 (1972)Google Scholar
  28. Loutit, J.S.: Studies on nutritionally deficient strains of Pseudomonas aeruginosa. I. The production by x-rays and the isolation of nutritionally deficient strains. Aust. J. Exp. Biol. med. Sci. 30, 287–294 (1952)Google Scholar
  29. Loutit, J.S.: Investigation of the mating system of Pseudomonas aeruginosa strain 1. IV. Mapping of distal markers. Genet. Res. 13, 91–98 (1969)Google Scholar
  30. Loutit, J.S.: Investigation of the mating system of Pseudomonas aeruginosa strain 1. VI. Mercury resistance associated with the sex factor (FP). Genet. Res. 16, 179–184 (1970)Google Scholar
  31. Loutit, J.S., Marinus, M.G.: Investigation of the mating system of Pseudomonas aeruginosa strain 1. II. Mapping of a number of early markers. Genet. Res. 12, 37–44 (1968)Google Scholar
  32. Low, B.: Rapid mapping of conditional and auxotrophic mutations in Escherichia coli K-12. J. Bact. 113, 798–812 (1973)Google Scholar
  33. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  34. Maas, W.K., Novelli, G.D., Lipmann, F.: Acetylation of glutamic acid by extracts of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 39, 1004–1007 (1953)Google Scholar
  35. Marinus, M.G., Loutit, J.S.: Regulation of isoleucine-valine biosynthesis in Pseudomonas aeruginosa. I. Characterisation and mapping of mutants. Genetics 63, 547–556 (1969)Google Scholar
  36. Matsumoto, H., Hosogaya, S., Suzuki, K., Tazaki, T.: Arginine gene cluster of Serratia marcescens. Jap. J. Microbiol. 19, 35–44 (1975)Google Scholar
  37. Matsumoto, H., Tazaki, T.: Genetic recombination in Klebsiella pneumoniae. An approach to genetic linkage mapping. Jap. J. Microbiol. 14, 129–141 (1970)Google Scholar
  38. Matsumoto, H., Tazaki, T.: Serotypic recombination in Pseudomonas aeruginosa. In: Microbial drug resistance (S. Mitsuhashi and H. Hashimoto, eds.), pp. 281–290. University of Tokyo Press 1975Google Scholar
  39. Mee, B.J., Lee, B.T.O.: An analysis of histidine requiring mutants in Pseudomonas aeruginosa. Genetics 55, 709–722 (1967)Google Scholar
  40. Mee, B.J., Lee, B.T.O.: A map order for hisI, one of the genetic regions controlling histidine biosynthesis in Pseudomonas aeruginosa, using the transducing phage F116. Genetics 62, 687–696 (1969)Google Scholar
  41. Mergeay, M., Gigot, D., Beckmann, J., Glansdorff, N., Piérard, A.: Physiology and genetics of carbamoylphosphate synthesis in Escherichia coli K12. Molec. gen. Genet. 133, 299–316 (1974)Google Scholar
  42. Miller, J.H.: Experiments in molecular genetics, pp. 86–90. New York: Cold Spring Harbor Laboratory 1972Google Scholar
  43. Mills, B.J., Holloway, B.W.: Mutants of Pseudomonas aeruginosa that show specific hypersensitivity to aminoglycosides. Antimicrob. Agents Chemother. 10, 411–416 (1976)Google Scholar
  44. Morris, C.J., Thompson, J.F.: Acetyl coenzyme A-glutamate acetyltransferase and N 2-acetylornithine-glutamate acetyltransferase of Chlorella. Plant. Physiol. 55, 960–967 (1975)Google Scholar
  45. Ornston, L.N., Ornston, M.K., Chou, G.: Isolation of spontaneous mutant strains of Pseudomonas putida. Biochem. biophys. Res. Commun. 36, 179–184 (1969)Google Scholar
  46. Pemberton, J.M., Holloway, B.W.: Chromosome mapping in Pseudomonas aeruginosa. Genet. Res. 19, 251–260 (1972a)Google Scholar
  47. Pemberton, J.M., Holloway, B.W.: A mutant of Pseudomonas aeruginosa with increased conjugational ability. Aust. J. exp. Biol. med. Sci. 50, 577–588 (1972b)Google Scholar
  48. Piérard, A., Glansdorff, N., Gigot, D., Crabeel, M., Halleux, P., Thiry, L.: Repression of Escherichia coli carbamoylphosphate synthase: relationships with enzyme synthesis in the arginine and pyrimidine pathways. J. Bact. 127, 291–301 (1976)Google Scholar
  49. Piérard, A., Glansdorff, N., Yashphe, J.: Mutations affecting uridine monophosphate pyrophosphorylase or the argR gene in Escherichia coli. Molec. gen. Genet. 118, 235–245 (1972)Google Scholar
  50. Prozesky, O.W., Grabow, W.O.K., van der Merwe, S., Coetzee, J.N.: Arginine gene clusters in the Proteus-Providence group. J. gen. Microbiol. 77, 237–240 (1973)Google Scholar
  51. Raijman, L., Jones, M.E.: Carbamate kinase. In: The Enzymes (P.D. Boyer, ed.), Vol. IXB, pp. 97–119. New York: Academic Press 1973Google Scholar
  52. Ramos, F., Stalon, V., Piérard, A., Wiame, J.M.: The specialization of the two ornithine carbamoyltransferases of Pseudomonas. Biochim. biophys. Acta (Amst.) 139, 98–106 (1967)Google Scholar
  53. Ratner, S., Kunkemueller, M.: Separation and properties of argininosuccinate and its two anhydrides and their detection in biological materials. Biochemistry 5, 1821–1832 (1966)Google Scholar
  54. Sanderson, K.E.: Linkage map of Salmonella typhimurium, edition IV. Bact. Rev. 36, 558–586 (1972)Google Scholar
  55. Stalon, V., Ramos, F., Piérard, A., Wiame, J.M.: The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas. Biochim. biophys. Acta (Amst.) 139, 91–97 (1967)Google Scholar
  56. Stalon, V., Ramos, F., Piérard, A., Wiame, J.M.: Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A comparison with the anabolic transferase and with a mutationally modified catabolic transferase. Europ. J. Biochem. 29, 25–35 (1972)Google Scholar
  57. Stanisich, V., Holloway, B.W.: Conjugation in Pseudomonas aeruginosa. Genetics 61, 327–339 (1969)Google Scholar
  58. Stanisich, V.A., Holloway, B.W.: A mutant sex factor of Pseudomonas aeruginosa. Genet. Res. 19, 91–108 (1972)Google Scholar
  59. Stanisich, V.A., Richmond, M.H.: Gene transfer in the genus Pseudomonas. In: Genetics and biochemistry of Pseudomonas (P.H. Clarke and M.H. Richmond, eds.), pp. 163–190. London: J. Wiley & Son 1975Google Scholar
  60. Theil, E.C., Forsyth, G.W., Jones, E.E.: Expression of the arginine regulon of Escherichia coli W: evidence for a second regulatory gene. J. Bact. 99, 269–273 (1969)Google Scholar
  61. Udaka, S.: Pathway-specific pattern of control of arginine biosynthesis in bacteria. J. Bact. 91, 617–621 (1966)Google Scholar
  62. Voellmy, R., Leisinger, T.: Regulation of enzyme synthesis in the arginine system of Pseudomonas aeruginosa. J. gen. Microbiol. 73, xiii (1972)Google Scholar
  63. Voellmy, R., Leisinger, T.: Dual role for N 2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J. Bact. 122, 799–809 (1975)Google Scholar
  64. Voellmy, R., Leisinger, T.: Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. J. Bact. 128, 722–729 (1976)Google Scholar
  65. Vogel, H.J., Bonner, D.M.: Acetylornithinase of Escherichia coli: partial purification and some properties. J. biol. Chem. 218, 97–106 (1956)Google Scholar
  66. Vogel, H.J., McLellan, W.L.: N-Acetylglutamic γ-semialdehyde dehydrogenase (Escherichia coli). Methods Enzymol. 17A, 255–260 (1970a)Google Scholar
  67. Vogel, H.J., McLellan, W.L.: Acetylornithinase (Escherichia coli). Methods Enzymol. 17A, 265–269 (1970b)Google Scholar
  68. Vogel, R.H., McLellan, W.L., Hirvonen, A.P., Vogel, H.J.: The arginine biosynthesis system and its regulation. In: Metabolic regulation (H.J. Vogel, ed.), Vol. 5, pp. 463–488. New York: Academic Press 1971Google Scholar
  69. Watson, J.M., Holloway, B.W.: Suppressor mutations in Pseudomonas aeruginosa. J. Bact. 125, 780–786 (1976)Google Scholar
  70. Wiame, J.M., Dubois, E.L.: The regulation of enzyme synthesis in arginine metabolism of Saccharomyces cerevisiae. In: Second International Symposium on the Genetics of Industrial Microorganisms (K.D. Macdonald, ed.), pp. 391–406. London: Academic Press 1976Google Scholar
  71. Zipkas, D., Riley, M.: Simplified method for interruption of conjugation in Escherichia coli. J. Bact. 126, 559–560 (1976)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Dieter Haas
    • 1
  • Bruce W. Holloway
    • 1
  • Anton Schamböck
    • 2
  • Thomas Leisinger
    • 2
  1. 1.Department of GeneticsMonash UniversityClaytonAustralia
  2. 2.Mikrobiologisches Institut, Eldgenössische Technische HochschuleETH-ZentrumZürichSwitzerland

Personalised recommendations