Diabetologia

, Volume 32, Issue 5, pp 300–304 | Cite as

Hypertriglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes

Results from the 11-year follow-up of the Paris Prospective Study
  • A. Fontbonne
  • E. Eschwège
  • F. Cambien
  • J. -L. Richard
  • P. Ducimetière
  • N. Thibult
  • J. -M. Warnet
  • J. -R. Claude
  • G. -E. Rosselin
Originals

Summary

The Paris Prospective Study is a long-term investigation of the incidence of coronary heart disease in a large population of working men. The first follow-up examination involved 7,038 men, aged 43–54 years. Subjects with impaired glucose tolerance or diabetes (n=943) were selected from the total population for a separate analysis of coronary heart disease mortality risk factors. During a mean follow-up of 11 years, 26 of these 943 subjects with abnormal glucose tolerance died from coronary heart disease. Univariate analysis showed that plasma triglyceride level (p<0.006), plasma cholesterol level (p<0.02), and plasma insulin level both fasting and 2-h post-glucose load (p<0.02), were significantly higher in subjects who died from coronary heart disease compared to those who did not. In multivariate regression analysis using the Cox model, plasma triglyceride level was the only factor positively and significantly associated with coronary death. The distribution of plasma triglyceride levels was clearly higher for the subjects who died from coronary heart disease compared to those who did not die from this cause or were alive at the end of the follow-up. This new epidemiological evidence that hypertriglyceridaemia is an important predictor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes suggests a possible role of dyslipidaemia in the excessive occurrence of atherosclerotic vascular disease in this category of subjects.

Key words

Epidemiology risk factors coronary heart disease mortality diabetes impaired glucose tolerance plasma insulin level plasma triglyceride level 

References

  1. 1.
    Garcia MJ, McNamara PM, Gordon T, Kannel WB (1974) Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 23: 105–111Google Scholar
  2. 2.
    WHO Expert Committee on Diabetes Mellitus (1980) Second report. Technical report series 646. WHO, GenevaGoogle Scholar
  3. 3.
    Vigorita VJ, Moore GW, Hutchins GM (1980) Absence of correlation between coronary arterial atherosclerosis and severity or duration of diabetes mellitus of adult onset. Am J Cardiol 46: 535–542Google Scholar
  4. 4.
    Jarrett RJ, Shipley MJ (1988) Type 2 (non-insulin-dependent) diabetes mellitus and cardiovascular disease — putative association via common antecedents; further evidence from the Whitehall Study. Diabetologia 31: 737–740Google Scholar
  5. 5.
    Pyörälä K (1979) Relationship of glucose tolerance and plasma insulin to the incidence of coronary heart disease: results from two population studies in Finland. Diabetes Care 2: 131–141Google Scholar
  6. 6.
    Welborn TA, Wearne K (1979) Coronary heart disease incidence and cardiovascular mortality in Busselton with reference to glucose and insulin concentrations. Diabetes Care 2: 154–160Google Scholar
  7. 7.
    Ducimetiére P, Eschwége E, Papoz L, Richard JL, Claude JR, Rosselin GE (1980) Relationship of plasma insulin levels to the incidence of myocardial infarction and coronary heart disease mortality in a middle-aged population. Diabetologia 19: 205–210Google Scholar
  8. 8.
    Eschwége E, Richard JL, Thibult N, et al. (1985) Coronary heart disease mortality in relation with diabetes, blood glucose and plasma insulin levels. The Paris Prospective Study ten years later. Horm Metabol Res Suppl Series 15: 41–56Google Scholar
  9. 9.
    Ganda OMP (1985) Pathogenesis of macrovascular disease including the influence of lipids. In: Marble A, Krall LP, Bradley AR, Christlieb AR, Soeldner JS (eds) Joslin's diabetes mellitus. Lea & Febiger, Philadelphia, pp 217–250Google Scholar
  10. 10.
    Barrett-Connor E, Grundy SM, Holdbrook MJ (1982) Plasma lipids and diabetes mellitus in an adult community. Am J Epidemiol 115: 657–663Google Scholar
  11. 11.
    Saudek CD, Eder HA (1979) Lipid metabolism in diabetes mellitus. Am J Med 66: 843–852Google Scholar
  12. 12.
    Orchard TJ, Becker DJ, Bates M, Kuller LH, Drash AL (1983) Plasma insulin and lipoprotein concentrations: an atherogenic association? Am J Epidemiol 118: 326–337Google Scholar
  13. 13.
    Zavaroni I, Dall'Aglio E, Alpi O et al. (1985) Evidence for an independent relationship between plasma insulin and concentration of high density lipoprotein cholesterol and triglyceride. Atherosclerosis 55: 259–266Google Scholar
  14. 14.
    Cambien F, Warnet M, Eschwége E, Richard JL, Rosselin G (1987) Body mass, blood pressure, glucose and lipids. Does plasma insulin explain their relationships? Arateriosclerosis 7: 197–202Google Scholar
  15. 15.
    Cahill GF Jr (1988) Beta-cell deficiency, insulin resistance, or both? N Engl J Med 318: 1268–1270Google Scholar
  16. 16.
    Ducimetière P, Richard JL, Claude JR (1981) Les cardiopathies ischémiques: incidence et facteurs de risque. L'Etude Prospective Parisienne. Editions INSERM, Paris, pp 9–21Google Scholar
  17. 17.
    Rosselin G, Assan R, Yalow RS, Berson SA (1966) Separation of antibody bound and unbound peptide hormone labelled with iodine 131 by talcum powder and precipitates silica. Nature 212: 355–357Google Scholar
  18. 18.
    Anonymous (1963) Methodologie Technicon Auto Analyser ‘N’ 2a, 2nd edn Dec. Technicon LtdGoogle Scholar
  19. 19.
    Etienne G, Papin JP, Renault M (1963) Une méthode simple du dosage du cholestérol par voie automatique. Ann Biol Clin 21: 851–853Google Scholar
  20. 20.
    Claude JR, Corre F (1968) Considérations pratiques sur le dosage semi-automatique des triglycérides sériques par fluorométrie (méthode de Kiessler et Lederer). Comparaison avec la méthode manuelle colorimétrique de Van Handel et Zilversmit. Ann Biol Clin 26: 451–454Google Scholar
  21. 21.
    Cox DR (1972) Regression models and life tables (with discussion). J R Statist Soc B34: 187–220Google Scholar
  22. 22.
    Stamler J, Stamler R (1979) Asymptomatic hyperglycaemia and coronary heart disease. A series of papers by the International Collaborative Group based on studies in fifteen populations. Joint discussion. J Chron Dis 32: 829–837Google Scholar
  23. 23.
    Stern MP, Rosenthal M, Haffner SM (1985) A new concept of impaired glucose tolerance: relation to cardiovascular risk. Arteriosclerosis 5: 311–314Google Scholar
  24. 24.
    Editorial (1980) Diabetes, hyperglycaemia and coronary heart disease. Lancet I: 346Google Scholar
  25. 25.
    Janka HU (1985) Five-year incidence of major macrovascular complications in diabetes mellitus. Horm Metabol Res Suppl Series 15: 15–19Google Scholar
  26. 26.
    West KM, Ahuja MMS, Bennett PH, et al. (1983) The role of circulating glucose and triglyceride concentrations and their interaction with other risk factors as determinants of arterial disease in nine diabetic population samples from the WHO Multinational Study. Diabetes Care 6: 361–369Google Scholar
  27. 27.
    Hulley SB, Rosenman RH, Bawol RD, Brand RJ (1980) Epidemiology as a guide to clinical decisions. The association between triglyceride and coronary heart disease. N Engl J Med 302: 1383–1418Google Scholar
  28. 28.
    Castelli WP (1986) The triglyceride issue: a view from Framingham. Am Heart J 112: 432–437Google Scholar
  29. 29.
    Cambien F, Jacqueson A, Richard JL, Warnet JM, Ducimetière P, Claude JR (1986) Is the level of serum triglyceride a significant predictor of coronary death in “normocholesterolemic” subjects? The Paris Prospective Study. Am J Epidemiol 124: 624–632Google Scholar
  30. 30.
    Nikkilä EA (1978) Metabolic and endocrine control of plasma high density lipoprotein concentration. Relation to catabolism of triglyceride-rich lipoproteins. In: Gotto AM, Miller NE, Oliver MF (eds) High density lipoproteins and atherosclerosis. Elsevier, Amsterdam, pp 177–192Google Scholar
  31. 31.
    Albrink MJ, Krauss RM, Lindgren FT (1980) Intercorrelations among plasma high density lipoprotein, obesity and triglycerides in a normal population. Lipids 15: 668–676Google Scholar
  32. 32.
    Gordon T, Castelli WP, Hjortland MC, et al. (1977) High density lipoprotein as a protective factor against coronary heart disease. Am J Med 62: 707–714Google Scholar
  33. 33.
    Abrams JJ, Ginsberg H, Grundy SM (1982) Metabolism of cholesterol and plasma triglycerides in non-ketotic diabetes mellitus. Diabetes 31: 903–910Google Scholar
  34. 34.
    Uusitupa M, Siitonen O, Voutilainen E, et al. (1986) Serum lipids and lipoproteins in newly-diagnosed non-insulin-dependent (Type II) diabetic patients with special reference to factors influencing HDL-cholesterol and triglyceride levels. Diabetes Care 9: 17–22Google Scholar
  35. 35.
    Steiner G (1986) Hypertriglyceridemia and carbohydrate intolerance: interrelations and therapeutic implications. Am J Cardiol 57: 27G-30GGoogle Scholar
  36. 36.
    Fossati P, Romon-Rousseaux M (1987) Insulin and HDL cholesterol metabolism. Diabete Metabolisme (Paris) 13: 390–394Google Scholar
  37. 37.
    Bernstein RM, Davis BM, Olefsky JM, Reaven GM (1978) Hepatic insulin responsiveness in patients with endogenous hypertriglyceridaemia. Diabetologia 14: 249–253Google Scholar
  38. 38.
    Stalder M, Pometta D, Suenram A (1981) Relationship between plasma insulin levels and high density lipoprotein cholesterol levels in healthy men. Diabetologia 21: 544–548Google Scholar
  39. 39.
    Laakso M, Pyörälä K, Voutilainen E, Marniemi J (1987) Plasma insulin, serum lipids and lipoproteins in middle-aged non-insulin-dependent diabetic and non-diabetic subjects. Am J Epidemiol 125: 611–621Google Scholar
  40. 40.
    Reaven GM, Chen YDI (1988) Role of insulin in regulation of lipoprotein metabolism in diabetes. Diabetes Metabol Rev 4: 639–652Google Scholar
  41. 41.
    Bates SR, Murphy PL, Feng Z, Kanazawa T, Getz GS (1984) Very low density lipoproteins promote triglyceride accumulation in macrophages. Arteriosclerosis 4: 103–114Google Scholar
  42. 42.
    Steiner G, Vranic M (1982) Hyperinsulinemia and hypertriglyceridemia, a vicious cycle with atherogenic potential. Intern J Obesity 6 [Suppl 1]: 117–124Google Scholar
  43. 43.
    Reaven GM, Greenfeld MS (1981) Diabetes hypertriglyceridemia. Evidence for three clinical syndromes. Diabetes 30 [Suppl 2]: 66–75Google Scholar
  44. 44.
    Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37: 1595–1607Google Scholar
  45. 45.
    Colwell JA, Winocour PD, Lopes-Virella M, Halushka PV (1983) New concepts about the pathogenesis of atherosclerosis in diabetes mellitus. Am J Med 75: 67–80Google Scholar
  46. 46.
    Schwandt P (1985) Very low density lipoproteins in Type II diabetes mellitus and risk of atherosclerosis. Horm Metabol Res Suppl Series 15: 83–87Google Scholar
  47. 47.
    Pyörälä K, Uusitupa M, Laakso M, Siitonen O, Niskanen L, Rönnemaa T (1987) Macrovascular complications in relation to hyperinsulinaemia in non-insulin-dependent diabetes mellitus. Diabete Metabolisme (Paris) 13: 345–349Google Scholar
  48. 48.
    Thomas BJ, Jarrett JR, Keen H, Ruskin JH (1982) Relation of habitual diet to fasting plasma insulin concentration and the insulin response to oral glucose. Hum Nutr Clin Nutr 36c: 49–56Google Scholar
  49. 49.
    Pedersen O, Beck-Nielsen H, Heding L (1980) Increased insulin receptors after exercise in patients with insulin dependent diabetes mellitus. N Engl J Med 302: 886–892Google Scholar
  50. 50.
    Gordon DJ, Witztum JL, Hunninghake D (1983) Habitual physical activity and high density lipoprotein in men with primary hypercholesterolemia. The Lipid Research Clinic Coronary Primary Prevention Trial. Circulation 67: 512–520Google Scholar
  51. 51.
    Garg A, Grundy SM (1988) Lovastatin for lowering cholesterol levels in non-insulin-dependent diabetes mellitus. N Engl J Med 318: 81–86Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. Fontbonne
    • 1
  • E. Eschwège
    • 1
  • F. Cambien
    • 2
  • J. -L. Richard
    • 2
  • P. Ducimetière
    • 2
  • N. Thibult
    • 1
  • J. -M. Warnet
    • 3
  • J. -R. Claude
    • 3
  • G. -E. Rosselin
    • 4
  1. 1.INSERM Unité 21VillejuifFrance
  2. 2.INSERM Unité 258ParisFrance
  3. 3.Laboratoire de Recherche de la Direction de l'Action Sociale, de l'Enfance et de la SantéParisFrance
  4. 4.INSERM Unité 55ParisFrance

Personalised recommendations