, Volume 31, Issue 12, pp 892–895 | Cite as

Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and microvascular complications

  • P. Pietschmann
  • G. Schernthaner
  • W. Woloszczuk


Recent studies indicate that serum levels of osteocalcin, a 49-aminoacid bone matrix protein, are a biochemical marker of bone formation. In order to study bone metabolism in diabetes mellitus, in 28 patients with Type 1 (insulin-dependent) diabetes mellitus, in 38 patients with Type 2 (non-insulin-dependent) diabetes mellitus and two control groups, matched for Type 1 and Type 2 diabetic patients, respectively, serum levels of osteocalcin, parathyroid hormone and 25 hydroxy vitamin D were measured by radioimmunoassay. Whereas in Type 1 diabetic patients and control subjects serum levels of osteocalcin and 25 hydroxy vitamin D were not statistically different, serum osteocalcin and 25 hydroxy vitamin D levels were significantly decreased in Type 2 diabetic patients when compared with corresponding control subjects (p<0.03 and p<0.001, respectively). Independent of the type of diabetes, serum parathyroid hormone levels were comparable in diabetic patients and matched control subjects. Serum osteocalcin levels were significantly lower in Type 1 diabetic patients with retinopathy and/or proteinuria than in Type 1 diabetic patients without microangiopathy (p<0.05). Whereas serum parathyroid hormone levels in Type 2 diabetic patients with retinopathy and/or proteinuria were significantly increased (p<0.02), 25 hydroxy vitamin D levels were decreased (p<0.02) when compared with Type 2 diabetic patients without microangiopathy. Our data give evidence of a vitamin D deficiency and a decreased bone formation in patients with Type 2 diabetes mellitus. In Type 1 diabetes mellitus bone formation as reflected by serum osteocalcin levels is influenced by the presence or absence of microangiopathic complications.

Key words

Diabetes mellitus osteocalcin bone GLA-protein parathyroid hormone bone formation 25 OH vitamin D 


  1. 1.
    Morrison LB, Bogan IK (1927) Bone development in diabetic children: a roentgen study. Am J Med Sci 174: 313Google Scholar
  2. 2.
    Menczel J, Makin M, Robin G, Joye I, Naor E (1972) Prevalence of diabetes mellitus in Jerusalem. Its association with presenile osteoporosis. Isr J Med Sci 8: 918–919Google Scholar
  3. 3.
    Meema HE, Meema S (1967) The relationship of diabetes mellitus and body weight to osteoporosis in elderly females. Can Med Assoc J 96: 132–139Google Scholar
  4. 4.
    Forgács A, Rosinger A, Vértes L (1976) Diabetes mellitus and osteoporosis. Endocrinologie 67: 343–350Google Scholar
  5. 5.
    Levin ME, Boisseau VC, Avioli LV (1976) Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N Engl J Med 294: 241–245Google Scholar
  6. 6.
    Santiago JV, McAllister WH, Ratzan SK, Bussman Y, Haymond MW, Shackelford G, Weldon VV (1977) Decreased cortical thickness and osteopenia in children with diabetes mellitus. J Clin Endocrinol Metab 45: 845–848Google Scholar
  7. 7.
    McNair P, Madsbad S, Christensen MS, Christiansen C, Faber OK, Binder C, Transbol I (1979) Bone mineral loss in insulintreated diabetes mellitus: studies on pathogenesis. Acta Endocrinol (Copenh) 90: 463–472Google Scholar
  8. 8.
    McNair P, Madsbad S, Christiansen C, Faber OK, Transbol I, Binder C (1978) Osteopenia in insulin treated diabetes mellitus: its relation to age at onset, sex and duration of disease. Diabetologia 15: 87–90Google Scholar
  9. 9.
    Shore RM, Chesney RW, Mazess RB, Rose PG, Bargman GJ (1981) Osteopenia in juvenile diabetes. Calcif Tissue Int 33: 455–457Google Scholar
  10. 10.
    Wiske PS, Wentworth SM, Norton JA Jr, Epstein S, Johnston CC Jr (1982) Evaluation of bone mass and growth in young diabetics. Metabolism 31: 848–854Google Scholar
  11. 11.
    Leeuw I de (1977) Bone mass and bone density in maturity-type diabetics measured by the 125I photon-absorption technique. Diabetes 26: 1130–1135Google Scholar
  12. 12.
    Price PA, Parthemore JG, Deftos LJ, Nishimoto SK (1980) New biochemical marker for bone metabolism: measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J Clin Invest 66: 878–883Google Scholar
  13. 13.
    Price PA, Williamson MK, Lothringer JW (1981) Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J Biol Chem 256: 12760–12766Google Scholar
  14. 14.
    Brown JP, Delmas PD, Malaval L, Edouard C, Chapuy MC, Meunier PJ (1984) Serum bone GLA-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet I: 1091–1093Google Scholar
  15. 15.
    Gundberg CM, Markowitz ME, Mizruchi M, Rosen IF (1985) Osteocalcin in Human Serum: A Circadian Rhythm. J Clin Endocrinol Metab 60: 736–739Google Scholar
  16. 16.
    Pietschmann P, Woloszczuk W, Panzer S, Kyrie P, Smolen J (1988) Decreased serum osteocalcin levels in phenprocoumontreated patients. J Clin Endocrinol Metab 66: 1071Google Scholar
  17. 17.
    Lukert BP, Higgins JC, Stoskopf MM (1986) Serum osteocalcin is increased in patients with hyperthyroidism and decreased in patients receiving glucocorticoids. J Clin Endocrinol Metab 62: 1056–1058Google Scholar
  18. 18.
    Kelin M, Frost HM (1964) The numbers of bone resorption and formation foci in rib. Henry Ford Hosp Med Bull 12: 527–536Google Scholar
  19. 19.
    Wu K, Schubeck KE, Frost HM, Villanueva A (1970) Haversian bone formation rates determined by a new method in a mastadon, and in human diabetes mellitus and osteoporosis. Calcif Tissue Res 6: 204–219Google Scholar
  20. 20.
    Ishida H, Seino Y, Taminato T, Usami M, Takeshita N, Seino Y, Tsutsumi C, Moriuchi S, Akiyama Y, Kara K, Imura H (1988) Circulating levels and bone contents of bone carboxyglutamic acidcontaining protein are decreased in streptozocin-induced diabetes. Diabetes 37: 702–706Google Scholar
  21. 21.
    Hahn TJ, Downing SJ, Phang JM (1971) Insulin effect on amino acid transport in bone: dependence on protein synthesis and Na+. Am J Physiol 220: 1717–1723Google Scholar
  22. 22.
    Wettenhall REH, Schwartz PL, Bornstein J (1969) Actions of insulin and growth hormone on collagen and chondroitin sulfate synthesis in bone organ cultures. Diabetes 18: 280–284Google Scholar
  23. 23.
    Bartl R, Moser W, Burkhardt R, Sandel P, Kamke W, Mähr G, Adelmann BC (1978) Diabetische Osteornyelopathie: histobioptische Befunde an Knochen und Knochenmark bei Diabetes mellitus. Klin Wochenschr 56: 743–754Google Scholar
  24. 24.
    Camerini-Davalos R, Marble A, Muench H (1962) Liver function in diabetes mellitus. N Engl J Med 266: 1349–1354Google Scholar
  25. 25.
    Fogh-Andersen N, McNair P, Moller-Petersen J, Madsbad S (1982) Serum calcium fractions in diabetes mellitus. Clin Chem 28: 2073–2076Google Scholar
  26. 26.
    Witt MF, White NH, Santiago JV, Seino Y, Avioli LV (1983) Use of oral calcium loading to characterize the hypercalciuria of young insulin-dependent diabetics. J Clin Endocrinol Metab 57: 94–99Google Scholar
  27. 27.
    Storm TL, Sorensen OH, Lund BJ, Christiansen JS, Andersen AR, Lumholtz IB, Parving HH (1983) Vitamin D metabolism in insulin-dependent diabetes mellitus. Metab Bone Dis Relat Res 5: 107–110Google Scholar
  28. 28.
    Heath H, Lambert PW, Service FJ, Arnaud SB (1979) Calcium Homeostasis in Diabetes Mellitus. J Clin Endocrinol Metab 49: 462–466Google Scholar
  29. 29.
    Nyomba BL, Bouillon R, Bidingija M, Kandjingu K, Moor P de (1986) Vitamin D metabolites and their binding protein in adult diabetic patients. Diabetes 35: 911–915Google Scholar
  30. 30.
    Auwerkx J, Dequeker J, Bouillion R, Geusens P, Nijs J (1988) Mineral metabolism and bone mass at peripheral and axial skeleton in diabetes mellitus. Diabetes 37: 8–12Google Scholar
  31. 31.
    Tsai KS, Wahner HW, Offord KP, Melton III LJ, Kumar R, Riggs BL (1987) Effect of aging on Vitamin D stores and bone density in women. Calcif Tissue Int 40: 241–243Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • P. Pietschmann
    • 1
  • G. Schernthaner
    • 2
  • W. Woloszczuk
    • 3
  1. 1.Department of Medicine IIUniversity of ViennaAustria
  2. 2.Department of Medicine IRudolfstiftung HospitalAustria
  3. 3.Ludwig Boltzmann Institute of Clinical EndocrinologyViennaAustria

Personalised recommendations