Advertisement

Archive for Rational Mechanics and Analysis

, Volume 21, Issue 5, pp 343–367 | Cite as

Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas

  • H. P. McKeanJr.
Article

Keywords

Neural Network Complex System Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Carleman, T., Problèmes Mathématiques dans la théorie cinétique des gaz. Uppsala 1957.Google Scholar
  2. [2]
    Dresden, M., Scientific Theory Applied to Hydrodynamics. Dallas: Magnolia Petroleum Company 1956.Google Scholar
  3. [3]
    Ford, G. W., & G. E. Uhlenbeck, Lectures in Statistical Mechanics. Providence 1963.Google Scholar
  4. [4]
    Kac, M., Probability and Related Topics in the Physical Sciences. New York 1959.Google Scholar
  5. [5]
    Linnik, Yu.V., An information-theoretic proof of the central limit theorem with the Lindeberg condition. Teor. Veroyatnost. i ee Primenen. 4, 288–299 (1959).Google Scholar
  6. [6]
    McKean, H.P., Jr., Entropy is the only increasing functional of Kac's 1-dimensional caricature of a Maxwellian gas. Z. für Wahrscheinlichkeitstheorie 2, 167–172 (1963).Google Scholar
  7. [7]
    Maxwell, J.C., Scientific Papers (2). New York 1952.Google Scholar
  8. [8]
    Morgenstern, D., General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules. Proc. Nat. Acad. Sci. USA 40, 719–721 (1954).Google Scholar
  9. [9]
    Povzner, A.Ya., On Boltzmann's equation in the kinetic theory of gases. Mat. Sb. 58, 63–86 (1962).Google Scholar
  10. [10]
    Trotter, H., An elementary proof of the central limit theorem. Arch. Math. 10, 226–234 (1959).Google Scholar
  11. [11]
    Wild, E., On Boltzmann's equation in the kinetic theory of gases. Proc. Camb. Phil. Soc. 47, 602–609 (1951).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • H. P. McKeanJr.
    • 1
    • 2
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridge
  2. 2.The Rockefeller InstituteNew York

Personalised recommendations