Molecular and General Genetics MGG

, Volume 223, Issue 3, pp 513–516 | Cite as

A previously unrecognized glutamine synthetase expressed in Klebsiella pneumoniae from the glnT locus of Rhizobium leguminosarum

  • G. Espin
  • S. Moreno
  • M. Wild
  • R. Meza
  • M. Iaccarino
Short Communications


Using glnT DNA of Rhizobium meliloti as a hybridization probe we identified a R. leguminosarum biovar phaseoli (R. l. phaseoli) locus (glnT) expressing a glutamine synthetase activity in Klebsiella pneumoniae. A 2.2 kb DNA fragment from R. l. phaseoli was cloned to give plasmid pMW5a, which shows interspecific complementation of a K. pneumoniaeglnA mutant. The cloned sequence did not show cross-hybridization to glnA or glnII, the genes coding for two glutamine synthetase isozymes of Rhizobium spp. While in previous reports on glnT of R. meliloti and Agrobacterium tumefaciens no glutamine synthetase activity was detected, we do find activity with the glnT locus of R. l. phaseoli. The glutamine synthetase (GSIII) activity expressed in a K. pneumoniae glnA strain from pMW5a shows a ratio of biosynthetic to transferase activity 103-fold higher than that observed for GSI or GSII. GSIII is similar in molecular weight and heat stability to GSI.

Key words

Rhizobium leguminosarum bv. phaseoli Glutamine synthetases Nitrogen metabolism glnT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bender RA, Jansen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B (1977) Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol 129:1001–1009Google Scholar
  2. Brewin NJ, Beringer JE, Johnston AWV (1980) Plasmid-mediated transfer of host-range specificity between two strains of Rhizobium leguminosarum. J Gen Microbiol 120:423–420Google Scholar
  3. de Bruijn FJ, Sundaresan V, Szeto WW, Ow DW, Ausubel FM (1984) Regulation of the nitrogen fixation (nif) genes of Klebsiella pneumoniae and Rhizobium meliloti: Role of nitrogen regulation (ntr) genes. In: Veeger C, Newton WE (eds) Advances in Nitrogen Fixation Research. Nijhoff/Junk, The Hague, pp 627–633Google Scholar
  4. de Bruijn FJ, Rossbach S, Schneider M, Radet P, Messmer S, Szeto WW, Ausubel FM, Schell J (1989) Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J Bacteriol 171:1673–1682Google Scholar
  5. Carlson TA, Chelm BK (1986) Apparent eukaryotic origin of glutamine synthetase II from the bacterium Bradyrhizobium japonicum. Nature 322:568–570Google Scholar
  6. Carlson TA, Guerinot ML, Chelm BK (1985) Characterization of the gene encoding glutamine synthetase I (glnA) from Bradyrhizobium japonicum. J Bacteriol 162:698–703Google Scholar
  7. Carlson TA, Martin GB, Chelm BK (1987) Differential transcription of the two glutamine synthetase genes of Bradyrhizobium japonicum. J Bacteriol 169:5861–5866Google Scholar
  8. Colonna-Romano S, Riccio A, Guida M, Defez R, Lamberti A, Iaccarino M, Arnold W, Priefer U, Pühler A (1987) Tight linkage of glnA and a putative regulatory gene in R. leguminosarum. Nucleic Acids Res 15:1951–1963Google Scholar
  9. Darrow RA, Knotts RR (1977) Two forms of glutamine synthetase in free-living root nodule bacteria. Biochem Biophys Res Commun 78:554–559Google Scholar
  10. Dixon R, Kennedy C, Kondorosi A, Krishnapillai V, Merrick M (u1977) Complementation analysis of Klebsiella pneumoniae mutants defective in nitrogen fixation. Mol Gen Genet 157:189–198Google Scholar
  11. Edmands J, Noridge NA, Benson DR (1987) The actinorrhizal root-nodule symbiont Frankia sp. strain Cpl1 has two glutamine synthetases. Proc Natl Acad Sci USA 84:6126–6130Google Scholar
  12. Espin G, Alvarez-Morales A, Cannon F, Dixon R, Merrick M (1982) Cloning of the gInA, ntrB and ntrC genes of Klebsiella pneumoniae and studies on their role in regulation of the nitrogen fixation (nif) gene cluster. Mol Gen Genet 186:518–524Google Scholar
  13. Espin G, Moreno S, Wild M (1985) Cloning of genes involved in glutamine synthesis in Rhizobium phaseoli. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus/Nijhoff, p 219Google Scholar
  14. Espin G, Moreno S, Wild M, Meza R (1988) Rhizobium phaseoli glutamine synthetases. In: Bothe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: One hundred years after. Gustav Fischer, New York p 571Google Scholar
  15. Evistigneeva ZG, Kaush MV, Aseeva KB, Kretovich VL (1983) Multiple molecular forms of glutamine synthetase in Rhizobium lupini bacteroids. Biokhimiya 48:405–408Google Scholar
  16. Filser MMK, Moscatelli C, Lamberti A, Vincze E, Guida M, Salzano G, Iaccarino M (1986) Characterization and cloning of two Rhizobium leguminosarum genes coding for glutamine synthetase activities. J Gen Microbiol 132:2561–2569Google Scholar
  17. Fuchs RL, Kvister DL (1980) Comparative properties of glutamine synthetase I and II in Rhizobium and Agrobacterium spp. J Bacteriol 144:641–648Google Scholar
  18. Kumar PS, Rao SLN (1986) Identificaton and characterization of three forms of glutamine synthetase unique to Rhizobia. Curr Microbiol 14:113–116Google Scholar
  19. Kustu S, Hirschman D, Burtun D, Jelesco J, Meeks JC (1984) Covalent modification of bacterial glutamine synthetase: physiological significance. Mol Gen Genet 197:309–317Google Scholar
  20. Lowry D, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  21. Morett E, Moreno S, Espin G (1985) Impaired nitrogen fixation and glutamine synthesis in methionine sulfoximine mutants of Rhizobium phaseoli. Mol Gen Genet 200:229–234Google Scholar
  22. Noel KD, Sanchez A, Fernandez L, Leemans J, Cevallos MA (1984) Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol 158:148–155Google Scholar
  23. Orr J, Haselkorn R (1981) Kinetic and inhibition studies of glutamine synthetase from the cyanobacterium Anabaena 7120. J Biol Chem 256:13099–13104Google Scholar
  24. Rossbach S, Schell J, de Bruijn FJ (1988) Cloning and analysis of Agrobacterium tumefaciens C58 loci involved in glutamine biosynthesis: Neither the glnA (GSI) nor the glnII (GSII) gene plays a role in virulence. Mol Gen Genet 212:38–47Google Scholar
  25. Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1:784–791Google Scholar
  26. Somerville JE, Kahn ML (1983) Cloning of glutamine synthetase I gene from Rhizobium meliloti. J Bacteriol 156:167–176Google Scholar
  27. Somerville JE, Shatters RG, Kahn ML (1989) Isolation, characterization, and complementation of Rhizobium meliloti 104A14 mutants that lack glutamine synthetase II activity. J Bacteriol 171:5079–5086Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • G. Espin
    • 1
  • S. Moreno
    • 1
  • M. Wild
    • 1
  • R. Meza
    • 1
  • M. Iaccarino
    • 2
  1. 1.Unidad de Biologia Molecular y Biotecnologia VegetalUniversidad Nacional Autonoma de MexicoCuernavacaMexico
  2. 2.CNRIstituto Internazionale di Genetica e BiofisicaNapoliItaly

Personalised recommendations