Advertisement

Archives of Microbiology

, Volume 162, Issue 1–2, pp 85–90 | Cite as

Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds

  • Werner Liesack
  • Friedhelm Bak
  • Jan-Ulrich Kreft
  • E. Stackebrandt
Original Paper

Abstract

A polyphasic approach was used in which genotypic and phenotypic properties of a gram-negative, obligately anaerobic, rod-shaped bacterium isolated from a black anoxic freshwater mud sample were determined. Based on these results, the name Holophaga foetida gen. nov., sp. nov. is proposed. This microorganism produced dimethylsulfide and methanethiol during growth on trimethoxybenzoate or syringate. The only other compounds utilized were pyruvate and trihydroxybenzenes such as gallate, phloroglucinol, or pyrogallol. The aromatic compounds were degraded to acetate. Although comparison of the signature nucleotide pattern of the five established subclasses of Proteobacteria with the 16S rDNA sequence of Holophaga foetida revealed a relationship to members of the δ-subclass, the phylogenetic position within the radiation of this class is so deep and dependent upon the number and selection of reference sequences that its affiliation to the Proteobacteria must be considered tentative. The type strain is H. foetida strain TMBS4 (DSM 6591).

Key words

Holophaga foetida Sulfide-methylation Homoacetogenic bacterium Pelobacter Acetobacterium 16S rRNA analysis Phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae MO (1986) The ocean as a source of atmospheric sulfur compounds. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. Reidel, New York, pp 331–362Google Scholar
  2. Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130: 255–261Google Scholar
  3. Bak F, Finster K, Rothfuß F (1992) Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch Microbiol 157: 529–534Google Scholar
  4. Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27: 355–361Google Scholar
  5. Bartholomew JW (1962) Variables influencing results, and precise definition of steps in Gram staining as a means of standardizing the results obtained. Stain Technol 37: 139–155Google Scholar
  6. Brow MAD (1990) Sequencing with Taq DNA polymerase. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 189–196Google Scholar
  7. Brune A, Schink B (1990) Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell extracts of Pelobacter acidigallict. J Bacteriol 172: 1070–1076Google Scholar
  8. Cashion P, Holder-Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81: 461–466Google Scholar
  9. De Soete G (1983) A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48: 621–626Google Scholar
  10. Diekert G (1992) The acetogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 517–533Google Scholar
  11. Evers S, Weizenegger M, Ludwig W, Schink B, Schleifer K-H (1993) The phylogenetic positions of Pelobacter acetylenicus and Pelobacter propionicus. Syst Appl Microbiol 16: 216–218Google Scholar
  12. Goebel BM, Stackebrandt E (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60: 1614–1621Google Scholar
  13. Hippe H, Andreesen JR, Gottschalk G (1992) The genus Clostridium—nonmedical. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 1800–1866Google Scholar
  14. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro NH (ed) Mammalian protein metabolism. Academic Press, New York London, pp 21–132Google Scholar
  15. Kamlage B, Boelter A, Blaut M (1993) Spectroscopic and potentiometric characterization of cytochromes in two Sporomusa species and their expression during growth on selected substrates. Arch Microbiol 159: 189–196Google Scholar
  16. Kelly DP, Smith NA (1990) Organic sulfur compounds in the environment. In: Marshall KC (ed) Advances in microbial ecology, vol 11. Plenum Press, New York, pp 345–385Google Scholar
  17. Kreft J-U, Schink B (1993) Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS4. Arch Microbiol 159: 308–315Google Scholar
  18. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–176Google Scholar
  19. Lane DJ, Harrison AP Jr, Stahl DA, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur-and iron-oxidizing eubacteria. J Bacteriol 174: 269–278Google Scholar
  20. Leigh JA, Mayer F, Wolfe RS (1981) Acetogenium kivui, a new thermophilic hydrogen-oxidising, acetogenic bacterium. Arch Microbiol 129: 275–280Google Scholar
  21. Lovelock JE, Maggs RJ, Rasmussen RA (1972) Atmospheric dimethylsulfide and the natural sulphur cycle. Nature 237: 452–453Google Scholar
  22. Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167Google Scholar
  23. Rainey FA, Dorsch M, Morgan HW, Stackebrandt E (1992) 16S rDNA analysis of Spirochaeta thermophila: position and implications for the systematics of the order Spirochaetales. Syst Appl Microbiol 15: 197–202Google Scholar
  24. Rainey FA, Toalster R, Stackebrandt E (1993) Desulfurella acetivorans, a thermophilic, acetate oxidizing and sulfur-reducing organism, representing a distinct lineage within the Proteobacteria. Syst Appl Microbiol 16: 373–379Google Scholar
  25. Read SM, Northcote DH (1981) Minimization of variation in the response to different proteins of the Coomassie blue G dye binding assay for protein. Anal Biochem 116: 53–64Google Scholar
  26. Schink B, Bomar M (1992) The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 1925–1936Google Scholar
  27. Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov., sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133: 195–201Google Scholar
  28. Smith L (1978) Bacterial cytochromes and their spectral characterization. In: Fleischer S, Packer L (eds) Methods in enzymology, vol 53. Academic Press, New York London, pp 202–212Google Scholar
  29. Stackebrandt E, Wehmeyer U, Schink B (1989) The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. Syst Appl Microbiol 11: 257–260Google Scholar
  30. Tanner RS, Stackebrandt E, Fox GE, Woese CR (1981) A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum and Eubacterium tenue. Curr Microbiol 5: 35–38Google Scholar
  31. Wisotzkey JD, Jurtshuk P Jr, Fox GE (1990) PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics. Curr Microbiol 21: 325–327Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Werner Liesack
    • 1
  • Friedhelm Bak
    • 1
  • Jan-Ulrich Kreft
    • 2
  • E. Stackebrandt
    • 3
  1. 1.Max-Planck-Institut für Terrestrische MikrobiologieMarburgGermany
  2. 2.Lehrstuhl für Mikrobielle ÖkologieUniversität KonstanzKonstanzGermany
  3. 3.Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM)BraunschweigGermany

Personalised recommendations