Advertisement

Molecular and General Genetics MGG

, Volume 229, Issue 1, pp 129–136 | Cite as

Molecular characterization of two stamen-specific genes, tap1 and fil1, that are expressed in the wild type, but not in the deficiens mutant of Antirrhinum majus

  • Wolfgang K.F. Nacken
  • Peter Huijser
  • Jose-Pio Beltran
  • Heinz Saedler
  • Hans Sommer
Article

Summary

Deficiens, a homeotic gene involved in the genetic control of flower development, codes for a putative transcription factor. Upon mutation of the gene, petals are transformed to sepals and stamens to carpels, indicating that deficiens is essential for the activation of genes required for petal and stamen formation. In a search for putative target genes of deficiens, several stamen- and petal-specific genes were cloned that are expressed in wild type but not in the deficiensglobiferamutant. In this report the molecular characterization of two of these genes, tap1 and fil1, is presented. They are transiently expressed during flower development. In situ hybridization data demonstrate that tap1 is expressed in the tapetum of the anthers and fill in the filament of the stamen and at the bases of the petals. Both genes encode small proteins with N-terminal hydrophobic domains suggesting that they are secreted. We discuss possible functions of the gene products and their relationship to the deficiens gene.

Key words

Antirrhinum majus Flower development MADS box factors Signal peptide Flower-specific genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böhlmann H, Clausen S, Behnke S, Giese H, Hiller C, Reimann-Philipp U, Schrader G, Barkholt V, Apel K (1988) Leaf-specific thionins of barley — a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defense mechanism of plants. EMBO J 7:1559–1565Google Scholar
  2. Brown JWS (1986) A catalogue of splice junctions and putative branch point sequences from plant introns. Nucleic Acids Res 14:9549–9560Google Scholar
  3. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19–23Google Scholar
  4. Domen C, Evrard J-L, Herdenberger F, Pillay DTN, Steinmetz A (1990) Nucleotide sequence of two anther specific cDNAs from sunflower (Helianthus annuus L). Plant Mol Biol 15:643–646Google Scholar
  5. Drews GN, Goldberg RB (1989) Genetic control of flower development. Trends Genet 5:256–261Google Scholar
  6. Echlin P (1971) The role of the tapetum during microsporogenesis of angiosperms. In: Heslop-Harrison J (ed) Pollen: Development and physiology. Butterworths, London, pp 41–61Google Scholar
  7. Frankel R, Izhar S, Nitsan J (1969) Timing of callose activity and cytoplasmic male sterility in Petunia. Biochem Genet 3:451–455Google Scholar
  8. Frischauf AM, Lehrach H, Poutska A, Murray N (1983) Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170:827–842Google Scholar
  9. Gasser CS, Budelier KA, Smith AG, Shah DM, Fraley RT (1989) Isolation of tissue-specific cDNAs from tomato pistils. Plant Cell 1:15–24Google Scholar
  10. Goldberg RB (1988) Plants: Novel developmental processes. Science 240:1460–1467Google Scholar
  11. Hayes RE, Senupta P, Cochran BH (1988) The human c-fos serum response factor and the yeast GRM/PRTF have related DNA-binding specificities. Genes Dev 2:1713–1722Google Scholar
  12. von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690PubMedGoogle Scholar
  13. Herdenberger F, Evard J-L, Kuntz M, Tessier L-H, Klein A, Steinmetz A, Pillay DTN (1990) Isolation of flower-specific cDNA clones from sunflower. Plant Sci 69:111–122Google Scholar
  14. Heslop-Harrison J (1964) Cell walls, cell membranes and protoplasmic connections during meiosis and pollen development. In: Luiskens HF (ed) Pollen physiology and fertilisation. North-Holland, Amsterdam, pp 39–47Google Scholar
  15. Joshi CP (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15:6643–6653Google Scholar
  16. Kamalay JC, Goldberg RB (1980) Regulation of structural gene expression in tobacco. Cell 19:935–946Google Scholar
  17. Kamalay JC, Goldberg RB (1984) Organ-specific nuclear RNAs in tobacco. Proc Natl Acad Sci USA 81:2801–2805Google Scholar
  18. Klemm M (1927) Vergleichende morphologische und entwicklungsgeschichtliche Untersuchung einer Reihe multipler Allelomorphe bei A. majus. Bot Arch 20:423–474Google Scholar
  19. Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1991) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224Google Scholar
  20. Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of mRNA from plant tissue. Anal Biochem 163:16–20PubMedGoogle Scholar
  21. Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6:43–48Google Scholar
  22. Mascarenhas JP (1989) The male gametophyte of flowering plants. Plant Cell 1:657–664Google Scholar
  23. Maxam A, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560Google Scholar
  24. Melzer S, Majewski DH, Apel K (1990) Early changes in gene expression during the transition from vegetative to generative growth in the long day plant Sinapsis alba. Plant Cell 2:953–961Google Scholar
  25. Nacken WKF (1990) Molekularbiologische Untersuchungen zur Blütenentwicklung von A. majus. Ph D thesis, Universität KölnGoogle Scholar
  26. Nacken WKF, Huijser P, Saedler H, Sommer H (1991) Molecular analysis of tap2, and anther-specific gene from A. majus. FEBS Lett 280:155–158Google Scholar
  27. Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 5:989–1003Google Scholar
  28. Passmore S, Elbe R, Tye B-K (1989) A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eucaryotes. Genes Dev 3:921–935Google Scholar
  29. Regan SM, Moffatt BA (1990) Cytochemical analysis of pollen development in wild-type Arabidopsis and a male-sterile mutant. Plant Cell 2:877–889Google Scholar
  30. Rodriguez-Palenzuela P, Pintor-Toro JA, Carbonero P, Garcia-Olmedo F (1988) Nucleotide sequence and endosperm-specific expression of the structural gene for the toxin α-hordothionin in barley. Gene 70:271–281Google Scholar
  31. Rohde W, Rosch K, Kröger K, Salamini F (1990) Nucleotide sequence of a Hordeum vulgare gene encoding a glycine-rich protein with homology to vertebrate cytokeratins. Plant Mol Biol 14:1057–1059Google Scholar
  32. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, NYGoogle Scholar
  33. Schwarz-Sommer Zs, Gierl A, Klösgen RB, Wienand U, Peterson PA, Saedler H (1984) The Spin (EN) transposable element controls the excision of a 2 kb DNA insert at the wx-m8 allele of Zea mays. EMBO J 3:1021–1028Google Scholar
  34. Schwarz-Sommer Zs, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Anthirrhinum majus. Science 250:931–936Google Scholar
  35. Seurinck J, Truettner J, Goldberg RB (1990) The nucleotide sequence of an anther-specific gene. Nucleic Acids Res 18:3403Google Scholar
  36. Smith AG, Gasser CS, Budelier KA, Fraley RT (1990) Identification and characterisation of stamen- and tapetum-specific genes from tomato. Mol Gen Genet 222:9–16Google Scholar
  37. Sommer H, Saedler H (1986) Molecular characterisation of the chalcone synthase gene of Anthirrhinum majus. Mol Gen Genet 202:429–434Google Scholar
  38. Sommer H, Beltran J-P, Huijser P, Pape H, Lönnig W-E, Saedler H, Schwarz-Sommer Zs (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Anthirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605–613Google Scholar
  39. Strassburger E, Noll F, Schenk AFW (1983) Lehrbuch der Botanik. Gustav Fischer Verlag, StuttgartGoogle Scholar
  40. Twell DT, Wing R, Yamaguchi J, McCormick S (1989) Isolation and expression of an anther-specific gene from tomato. Mol Gen Genet 217:240–245Google Scholar
  41. Ursin VM, Yamaguchi J, McCormick S (1989) Gametophytic and sporophytic expression of anther-specific genes in developing tomato anthers. Plant Cell 1:727–736Google Scholar
  42. Varner JE, Lin C-S (1989) Plant cell wall architecture. Cell 56:231–239Google Scholar
  43. Vasil IK (1967) Physiology and cytology of anther development. Biol Rev 42:327–361Google Scholar
  44. Vithanage HJ, Knox RB (1980) Periodicity of pollen development and quantitative cytochemistry of exine and intine enzymes in the grasses Perenne L. and Phalaris tuberosa L. Ann Bot 45:131–141Google Scholar
  45. Yanofsky MF, Ma H, Bowman JL, Drews GH, Feldman KA, Meyerowitz EM (1990) Agamous: an Arabidopsis homeotic gene whose product resembles transcription factors. Nature 346:35–38CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Wolfgang K.F. Nacken
    • 1
  • Peter Huijser
    • 1
  • Jose-Pio Beltran
    • 2
  • Heinz Saedler
    • 1
  • Hans Sommer
    • 1
  1. 1.Max-Planck-Institut für ZüchtungsforschungKöln 30Federal Republic of Germany
  2. 2.CSICInstituto de Agroquimica y Tecnologia de AlimentosValenciaSpain

Personalised recommendations