Advertisement

Acta Informatica

, Volume 11, Issue 2, pp 149–168 | Cite as

A binary operation on trees and an initial algebra characterization for finite tree types

  • Wolfgang Merzenich
Article
  • 28 Downloads

Summary

A binary operation on the class of trees is defined that generates a set B of finite trees form a trivial tree (one node) and B contains for every finite tree G exactly one element isomorphic to G. The binary operation defines an algebraic structure on B, and as a consequence the finite tree types are characterized as an initial algebra in the same way as the natural numbers are characterized as an initial algebra by the Peano-Lawvere axiom [2]. Simple and primitive recursion are defined and some applications of the initial algebra characterization are given.

Keywords

Information System Operating System Data Structure Communication Network Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbib, M.A., Manes, E.G.: Arrows, structures and functors. New York: Academic Press 1975Google Scholar
  2. 2.
    Birkhoff, G., MacLane, S.: Algebra. New York: Macmillan 1968Google Scholar
  3. 3.
    Comtet, L.: Advanced combinatorics. Boston: Dordrecht 1974Google Scholar
  4. 4.
    Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the specification, correctness and implementation of abstract data types. IBM Research Report RC 6487, 1977Google Scholar
  5. 5.
    Eilenberg, S., Wright, J.B.: Automata in general algebras. Information and Control 11, 452–470 (1967)Google Scholar
  6. 6.
    Give'on, Y., Arbib, M.A.: Algebra automata. II. The categorical framework for dynamic analysis. Information and Control 12, 346–370 (1968)Google Scholar
  7. 7.
    Grätzer, G.: Universal algebra. Princeton: Van Nostrand 1968Google Scholar
  8. 8.
    Harary, F., Plamer, E.M.: Graphical enumeration. New York: Academic Press 1966Google Scholar
  9. 9.
    MacLane, S.: Categories for the working mathematician. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  10. 10.
    Mezei, J., Wright, J.B.: Generalized ALGOL-like languages. IBM Research Report RC 1528, 1965Google Scholar
  11. 11.
    Oberschelp, W., Wille, D.: Mathematischer Einführungskurs für Informatiker. Stuttgart: Teubner 1976Google Scholar
  12. 12.
    Pareigis, B.: Categories and functors. New York: Academic Press 1970Google Scholar
  13. 13.
    Schmidt, J.: Mengenlehre, Bd. I. Mannheim: B.I. 1966Google Scholar
  14. 14.
    Thatcher, J.W.: Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. J. Comput. System Sci. 1, 317–322 (1967)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Wolfgang Merzenich
    • 1
  1. 1.Abteilung Informatik der Universität DortmundDortmundGermany (Fed. Rep.)

Personalised recommendations