Archives of Microbiology

, Volume 162, Issue 5, pp 344–351

Physiological regulation of competence induction for natural transformation in Acinetobacter calcoaceticus

  • Ronald Palmen
  • Pieter Buijsman
  • Klaas J. Hellingwerf
Original Paper
  • 99 Downloads

Abstract

Acinetobacter calcoaceticus induced competence for natural transformation maximally after dilution of a stationary culture into fresh medium. Competence was gradually lost during prolonged exponential growth and after entrance into the stationary state. Growth cessation and nutrient upshift were involved in the induction of competence. The level of competence of a chemostat culture of A. calcoaceticus was dependent on the nature of the growth limitation. Under potassium limitation a transformation frequency of ±1x10-4 was obtained. This frequency was independent of the specific growth rate. In phosphate-, nitrogen-, and carbon-limited chemostat cultures, in contrast, the transformation frequency depended on the specific growth rate; the transformation frequency equalled±10-4 at dilution rates close to µmax of 0.6h-1 and decreased to ±10-7 at a dilution rate of 0.1 h-1. We conclude that (1) DNA uptake for natural transformation in A. calcoaceticus does not serve a nutrient function and (2) competence induction is regulated via a promoter(s) that resembles the fis promoter from Escherichia coli.

Key words

DNA uptake Growth phase Dilution rate fis Promoter Stringent promoter Nutrient upshift Growth cessation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlquist EF, Fewson CA, Ritchie DA, Podmore J, Rowell V (1980) Competence for genetic transformation in Acinetobacter calcoaceticus NCIB8250. FEMS Microbiol Lett 7:107–109Google Scholar
  2. Augustin LB, Jacobson BA, Fuchs JA (1994) Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion. J Bacteriol 176: 378–387Google Scholar
  3. Avery OT, Mcleod CM, McCarthy M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 9:137–158Google Scholar
  4. Ball CA, Osuna R, Ferguson KC, Johnson RC (1992) Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 174:8043–8056Google Scholar
  5. Bernstein H, Byers GS, Michod RE (1981) Evolution of sexual reproduction: importance of DNA repair, complementation and variation. Am Naturalist 117:537–549Google Scholar
  6. Bertani G, Baresi L (1987) Genetic transformation in the methanogen Methanococcus voltae PS. J Bacteriol 169:2730–2738Google Scholar
  7. Biswas GD, Sox T, Blackman E, Sparling PF (1977) Factors affecting genetic transformation of Neisseria gonorrhoeae. J Bacteriol 129:983–992Google Scholar
  8. Biswas GD, Thompson SA, Sparling PF (1989) Gene transfer in Neisseria gonorrhoeae. Clin Microbiol Rev 2S:24–28Google Scholar
  9. Crabbendam PM, Neijssel OM, Tempest DW (1985) Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture. Arch Microbiol 142:375–382Google Scholar
  10. Cruze JA, Singer JT, Finnerty WR (1979) Conditions for quantitative transformation in Acinetobacter calcoaceticus. Curr Microbiol 3:129–132Google Scholar
  11. Dubnau D (1991) Genetic competence in Bacillus subtilis. Microbiol Rev 55:395–424Google Scholar
  12. Elgar MA, Crozier RH (1988) Sex with dead cells may be better than no sex at all. Trends Ecol Evol 3:249Google Scholar
  13. Essich E, Stevens B Jr, Porter RD (1990) Chromosomal transformation in the cyanobacterium Agmenellum quadruplicatum. J Bacteriol 172:1916–1922Google Scholar
  14. Gibbs CP, Reimann B-Y, Schulz E, Kaufmann A, Haas R, Meyer TF (1989) Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338:651–652Google Scholar
  15. Hueting S, de Lange T, Tempest DW (1979) Energy requirement for maintenance of the transmembrane potassium gradient in Klebsiella aerogenes NCTC 418: a continuous culture study. Arch Microbiol 123:183–188Google Scholar
  16. Ish-Horowicz D, Burke FJ (1981) Rapid and efficient cosmid cloning. Nucleic Acids Res 9:2989–2999Google Scholar
  17. Juni E (1972) Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J Bacteriol 112:917–931Google Scholar
  18. Juni E (1974) Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis. Appl Microbiol 27:16–24Google Scholar
  19. Juni E (1978) Genetics and physiology of Acinetobacter. Ann Rev Microbiol 32:349–371Google Scholar
  20. Juni E, Janik A (1969) Transformation of Acinetobacter calcoaceticus (Bacterium anitratum). J Bacteriol 98:281–288Google Scholar
  21. Michod RE, Wojciechowski MF, Hoelzer MA (1988) DNA repair and the evolution of transformation in the bacterium Bacillus subtilis. Genetics 118:31–39Google Scholar
  22. Mulder MM, Mattos MJT de, Postrna PW, Dam K van (1986) Energetic consequences of multiple K+ uptake systems. Biochim Biophys Acta 851:223–228Google Scholar
  23. Mulder MM, Gulden HML van der, Postma PW, Dam K van (1988) Continued growth of Escherichia coli after stopping medium addition to a potassium-limited chemostat culture. J Gen Microbiol 134:777–783Google Scholar
  24. Ormerod JG (1988) Natural genetic transformation in Chlorobium. In: Olson JM, Ormerod JG, Amesz J (eds) Green photosynthetic bacteria. Plenum Press, New YorkGoogle Scholar
  25. Page WJ, Tigerstrom M von (1979) Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol 139:1058–1061Google Scholar
  26. Palmen R, Vosman B, Kok R, Zee JR van der, Hellingwerf KJ (1992) Characterization of transformation-deficient mutants of Acinetobacter calcoaceticus. Mol Microbiol 6:1747–1754Google Scholar
  27. Palmen R, Vosman B, Buijsman P, Breek CKD, Hellingwerf KJ (1993) Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J Gen Microbiol 139:295–305Google Scholar
  28. Pennock J, Tempest DW (1988) Metabolic and energetic aspects of the growth of Bacillus stearothermophilus in glucose-limited and glucose-sufficient chemostat culture. Arch Microbiol 150:452–459Google Scholar
  29. Redfield RJ (1988) Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all? Genetics 119: 213–221Google Scholar
  30. Sawula RV, Crawford IP (1972) Mapping of the tryptophan genes of Acinetobacter calcoaceticus by transformation. J Bacteriol 112:797–805Google Scholar
  31. Siebers A, Altendorf K (1993) K+-translocating Kdp-ATPases and other bacterial P-type ATPases. In: Bakker E (ed) Alkali cation transport systems in prokaryotes. CRC Press, Ann Arbor, pp 225–252Google Scholar
  32. Stewart GJ, Carlson CA (1986) The biology of natural transformation. Ann Rev Microbiol 40:211–235Google Scholar
  33. Tirgari S, Moseley BEB (1980) Transformation in Micrococcus radiodurans: measurement of various parameters and evidence for multiple, independently segregating genomes per cell. J Gen Microbiol 119:287–296Google Scholar
  34. Trombe M-C, Clavé C, Manias J-M (1992) Calcium regulation of growth and differentiation in Streptococcus pneumoniae. J Gen Microbiol 138:77–84Google Scholar
  35. Veldkamp H (1976) Continuous culture in microbial physiology and ecology. Meadowfield Press, DurhamGoogle Scholar
  36. Vicente M, Kushner SR, Garrido T, Aldea M (1991) The role of the ‘gearbox’ in the transcription of essential genes. Mol Microbiol 5:2085–2091Google Scholar
  37. Vosman B, Hellingwerf KJ (1991) Molecular cloning and functional characterization of the recA analog from Pseudomonas stutzeri and construction of a P. stutzeri recA mutant. Antonie Van Leeuwenhoek 59:115–123Google Scholar
  38. Wahlund TM, Madigan MT (1991) Nitrogen fixation and genetic transformation in Chlorobium tepidum (abstract). Seventh international symposium on photosynthetic prokaryotes, Amherst, Massachusetts, USA, p 138 (abstr A)Google Scholar
  39. Worrell VE, Nagle DP Jr, McCarthy D, Eisenbraun A (1988) Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J Bacteriol 170: 663–656Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Ronald Palmen
    • 1
  • Pieter Buijsman
    • 1
  • Klaas J. Hellingwerf
    • 1
  1. 1.Department of Microbiology E.C. Slater Institute, BioCentrum AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Centre de Biochimie et de Génétique Cellulaires du CNRS et Université Paul SabatierToulouse CédexFrance

Personalised recommendations