Advertisement

Polar Biology

, Volume 9, Issue 4, pp 253–260 | Cite as

Vertical distributions of primary production and grazing by Calanus glacialis jaschnov and C. hyperboreus krøyer in Arctic waters (Barents Sea)

  • H. C. Eilertsen
  • K. S. Tande
  • J. P. Taasen
Article

Summary

Simultaneous measurements of phytoplankton primary production, and zooplankton grazing by Calanus glacialis and C. hyperboreus were carried out over a 24h period at two stations northeast of Spitzbergen in July and August 1985. Phytoplankton biomass was concentrated in a sub-surface maximum, and our results suggested that 65% to 90% of the carbon produced was grazed by these copepods. At both stations maximum grazing rates by these zooplankton were observed within and below the depth of maximum primary production. At least one third of regenerated primary production could be sustained by ammonia excreted by the large zooplankton species Calanus glacialis and C. hyperboreus.

Keywords

Biomass Phytoplankton Vertical Distribution Phytoplankton Biomass Station Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon (1985) Datarapport fra tokt med F/F “Lance” til Barentshavet August 1984. Univ i Tromsø, 220 ppGoogle Scholar
  2. Anderson GC, Frost BW, Peterson WK (1972) On the vertical distribution of zooplankton in relation to chlorophyll concentrations. In: Takenouti AH, Annaku K, Banse T, Kawamura S, Nishizawa S, Parsons TR, Tsujita T (eds) Biological Oceanography of the northern Pacific Ocean. Idemitsu, Shoten, Tokyo, Japan, pp 339–345Google Scholar
  3. Båmstedt U, Tande K (1985) Respiration and excretion rates of Calanus glacialis in Arctic waters of the Barents Sea. Mar Biol 87:259–266Google Scholar
  4. Bobrov JA (1985) Fytoplankton, zizni uslovija je suchestvovaija v pelagiali Barentseva marja. Akad Nauk SSSR, Apatity 1985:99–126Google Scholar
  5. Boyd CM, Smith SL, Cowles TJ (1980) Grazing patterns of copepods in the upwelling system off Peru. Limnol Oceanogr 25:583–596Google Scholar
  6. Brodskii KA (1967) Calanoids of the far eastern seas of the USSR. Akad Nauk SSSR, Moscow (Israel Program for Scientific Translations, Jerusalem 1967), 440 ppGoogle Scholar
  7. Conover RJ, Corner DS (1968) Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J Mar Biol Assoc UK 48:49–75Google Scholar
  8. Cullen JJ (1982) The deep chlorophyll maximum: Comparing Vertical profiles of Chlorophyll a. Can J Fish Aquat Sci 39:791–803Google Scholar
  9. Dagg MJ, Wyman KJ (1983) Natural ingestion rates of the copepods Neocalanus plumchrus and N. cristatus calculated from gut contents. Mar Ecol Prog Ser 13:37–46Google Scholar
  10. Dagg MJ, Vidal J, Whitledge TE, Iverson RL, Goering JJ (1982) The feeding, respiration, and excretion of zooplankton in the Bering Sea during a spring bloom. Deep-Sea Res 29:45–63Google Scholar
  11. Ellertsen B, Hassel A, Loeng H, Rey F, Tjelmeland S, Slagstad D (1981) Økologiske undersøkerlser nær iskanten i Barentshavet somrene 1979 og 1980. Fisken Havet 3:31–83Google Scholar
  12. Eilertsen H Chr, Tande K, Nøst Hegseth E (1987) The potential of herbivorous copepods for regulating the spring phytoplankton bloom in the Barents Sea. Contribution to symposium on marine sciences of the Arctic and sub-Arctic regions, Santander, Spain, Sept 1987Google Scholar
  13. Fleming RH (1939) The control of diatom populations by grazing. J Cons Perm Int Explor Mer 14:210–227Google Scholar
  14. Harvey HW, Cooper LH, Lebour MV, Russell FS (1935) Plankton production and its control. J Mar Biol Assoc UK 20:407–441Google Scholar
  15. Hassel A, Loeng H, Rey F, Skjoldal HR (1984) Prelimimære resultater fra tokt med F/F “G.O.Sars” i Barentshavet, 28.5-18.6. 1984. Havf Inst, Bergen, FO 8409, 70 ppGoogle Scholar
  16. Herman AW, Platt T (1983) Numerical modelling of diel carbon production and zooplankton grazing on the Scotian shelf based on observational data. Ecol Model 18:55–72Google Scholar
  17. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. J Cons Perm Int Explor Mer 30:3–15Google Scholar
  18. Huntley M, Tande K, Eilertsen H Chr (1987) On the trophic fate of Phaeocystis pouchetii II. Grazing rates of Calanus hyperboreus on diatoms and different size categories of P. pouchetii. J Exp Mar Biol Ecol 110:197–212Google Scholar
  19. Kiørboe F, Møhlenberg F, Nicolajsen H (1982) Ingestion rate and gut cleareance in the planktonic copepod Centropages hamatus (Lilljeborg) in relation to food concentration and temperature. Ophelia 21:181–194Google Scholar
  20. Legendre L, Demers S, Letaivre D (1986) Biological production at marine ergoclines. In: Nihoul JCJ (ed) Ecohydrodynamics. Elsevier, Amsterdam, pp 1–29Google Scholar
  21. Longhurst AR, Herman AW (1981) Do oceanic zooplankton aggregate at, or near, the deep chlorophyll maximum? J Mar Res 39:353–356Google Scholar
  22. Longhurst A, Sameoto D, Herman AW (1984) Vertical distribution of Arctic zooplankton in summer: eastern Canadian archipelago. J Plankton Res 6:137–168Google Scholar
  23. Lovegrove T (1966) The determination of dry weight of plankton and the effect of various factors on the values obtained. In: Barnes H (ed) Some contemporary studies in marine science. Allan and Unwin, London, pp 429–469Google Scholar
  24. Mackas D, Bohrer R (1976) Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J Exp Mar Biol Ecol 25:77–85Google Scholar
  25. Mullin, MM, Brooks ER (1972) The vertical distribution of juvenile Calanus (Copepoda) and phytoplankton within the upper 50m of water off La Jolla, California. In: Takenouti AH, Annaku K, Banse T, Kawamura S, Nishizawa S, Parsons TR, Tsujita T (eds) Biological oceanography of the northern Pacific Ocean. Idemitsu, Shoten, Tokyo, Japan, pp 347–354Google Scholar
  26. Nemoto T, Harrison G (1981) High latitude ecosystems. In: Longhurst AR (ed) Analysis of marine ecosystems. Academic Press, London New York, pp 95–126Google Scholar
  27. Ortner PB, Weibe PH, Cox JL (1980) Relationship between oceanic epizooplankton distributions and the seasonal deep chlorophyll maximum in the Northwestern Atlantic Ocean. J Mar Res 507–531Google Scholar
  28. Palmisano AC, SooHoo JB, SooHoo SL, Kottmeier ST, Craft LL, Sullivan CW (1986) Photoadaption in Phaeocystis pouchetii advected beneath annual sea ice in McMurdo Sound, Antarctica. J Planktion Res 5:891–906Google Scholar
  29. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  30. Riley GA (1976) A model of plankton patchiness. Limnol Oceanogr 21:873–880Google Scholar
  31. Roman MR, Yentsch CS, Gauzens AL, Phinney DA (1986) Grazer control of the fine-scale distribution of phytoplankton in warm-core Gulf Stream rings. J Mar Res 44:795–813Google Scholar
  32. Sakshaug E, Holm-Hansen O (1984) Factors governing pelagic production in polar oceans. In: Holm-Hansen, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. (Lecture notes on coastal and estuarine studies, vol 8). Springer, Berlin Heidelberg New York, pp 1–18Google Scholar
  33. Sameoto DD (1984) Vertical distribution of zooplankton biomass and species in northeasten Baffin Bay related to temperature and salinity. Polar Biol 2:213–224Google Scholar
  34. Skjoldal HR, Lannergren C (1978) The spring phytoplankton bloom in Lindåspollene, a land-locked Norwegian fjord. II. Biomass and activity of net- and nanoplankton. Mar Biol 47:313–323Google Scholar
  35. Strickland JDH, Parsons TR (1972) A practical handbook of Seawater analyses. J Fish Board Can Bull 167:311 ppGoogle Scholar
  36. Tande K, Båmstedt U (1985) Grazing rates of the copepods Calanus glacialis and C. finmarchicus in arctic waters of the Barents sea. Mar Biol 87:251–258Google Scholar
  37. Tande K, Hassel A, Slagstad D (1985) Gonad maturation and possible life cycle strategies in Calanus finmarchicus and C. glacialis in the northwestern part of the Barents Sea. In: Gray JS, Christiansen ME (eds) Marine Biology of polar regions and effects of stress on marine organisms. Wiley and Sons. pp 141–157Google Scholar
  38. Tett P, Edwards A (1984) Mixing and plankton: An interdisciplinary theme in oceanography. Oceanogr Mar Biol Ann Rev 22:99–123Google Scholar
  39. Venrick EL, McGowan JA, Mantyla AW (1973) Deep maxima of photosynthetic chlorophyll in the Pacific Ocean. Fish Bull 71:41–52Google Scholar
  40. Vinje T (1982) Frequency distribution of sea ice in the Greenland and Barents Sea. Norsk Polar Inst Årb 1980, Oslo, pp 47–57Google Scholar
  41. Vowinckel E, Orvig S (1970) The Climate of the north Polar Basin. In: Orvig S (ed) Climates of the polar regions. World survey of climatology, vol 14. Elsevier, New York, 368 ppGoogle Scholar
  42. Welschmeyer NA, Lorenzen CJ (1985) Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres. Limnol Oceanogr 30:1–21Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • H. C. Eilertsen
    • 1
  • K. S. Tande
    • 1
  • J. P. Taasen
    • 1
  1. 1.Norwegian College of Fisheries ScienceUniversity of TromsøTromsøNorway

Personalised recommendations