Advertisement

Acta Informatica

, Volume 25, Issue 2, pp 179–201 | Cite as

On the existence of symmetric algorithms to find leaders in networks of communicating sequential processes

  • L. Bougé
Article

Summary

We define a semantic notion of symmetry well-suited for networks of processes specified in Hoare's language CSP. Symmetric algorithms to find a leader in such networks are then studied. We show that the existence of such algorithms depends crucially on the network topology and on the use of input/output guards in processes. The election problem appears thus as a powerful criterion in assessing the expressive power of distributed programming languages like CSP.

Keywords

Information System Operating System Data Structure Communication Network Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.R., Francez, N.: Modelling the distributed termination convention of CSP. ACM Trans. Prog. Lang. Syst. 6, 370–379 (1984)CrossRefGoogle Scholar
  2. 2.
    Apt, K.R., Katz, S., Francez, N.: Appraising fairness in distributed languages. Proc. Ann. ACM Symp. on Princ. Progr. Languages, München (1987)Google Scholar
  3. 3.
    Apt, K., Richier, J.L.: Real time clocks versus virtual clocks. In: Control Flow and Data Flow: Concepts of Distributed Programming. M. Broy (ed.) NATO ASI Series F14, pp. 475–502. Berlin Heidelberg New York: Springer 1985Google Scholar
  4. 4.
    Angluin, D.: Local and global properties in networks of processors. Proceedings of the 12th Ann. ACM Symp. Theory Comp., pp. 82–93. Los Angeles, California (April 1980)Google Scholar
  5. 5.
    Bodlaender, H.L., van Leeuwen, J.: New upper bounds for decentralized extrema-finding in a ring of processors, Rept. No. RUU-CS-85-15. Dept. Comp. Science, Univ. Utrecht, The Netherlands 1985Google Scholar
  6. 6.
    Buckley, G.N., Silberschatz, A.: An effective implementation of the generalized input-output construct of CSP. ACM Trans. Prog. Lang. Syst. 5, 223–235 (1983)CrossRefGoogle Scholar
  7. 7.
    Bracha, G., Toueg, S.: Resilient consensus protocols. Proc. 2nd Ann. ACM Symp. Princ. Distr. Syst., pp. 12–26 Montreal (August) 1983Google Scholar
  8. 8.
    Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement protocols (extended abstract). Proc. 2nd Ann. ACM Symp. Princ. Distr. Syst., pp. 27–30. Montreal (August) 1983Google Scholar
  9. 9.
    Bernstein, A.J.: Output guards and nondeterminism in communicating sequential processes. ACM Trans. Prog. Lang. Syst. 2, 234–238 (1980)CrossRefGoogle Scholar
  10. 10.
    Bougé, L.: Repeated snapshots in distributed systems with synchronous communications and their implementation in CSP. Theor. Comput. Sci. 49, 145–169 (1987)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bougé, L.: Symmetry and genericity for CSP distributed system. Rept. No. 85-32, LITP, Univ. Paris 7, Paris (May) 1985Google Scholar
  12. 12.
    Bougé, L.: Genericity and symmetry for distributed systems: the case of CSP, Thèse d'état, Univ. Paris 7, 1987. Rept. No. 87/2, LIENS, Paris 1987Google Scholar
  13. 13.
    Bougé, L.: On the existence of generic broadcast algorithms in networks of communicating sequential processes. Proc. 2nd Int. Workshop on Distributed Algorithms, Rept. No. RUU-CS-87-10. Dept. Comp. Science, Univ. Utrecht, The Netherlands (July) 1987Google Scholar
  14. 14.
    Burns, J.E.: Symmetry in systems of asynchronous processes. Proceedings 22nd Symp. on Found. of Comp. Science, pp. 169–174. Nashville, Tennessee (1981)Google Scholar
  15. 15.
    Cohen, S., Lehmann, D., Pnueli, A.: Symmetric and economical solutions to the mutual exclusion problem in a distributed system. Automata, Languages and Programming, 10th Coll., Barcelona, Spain, July 1983. Lect. Notes Comp. Science 154, 128–136 (1983)CrossRefGoogle Scholar
  16. 16.
    Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Trans. Prog. Lang. Syst. 6, 632–646 (1984)CrossRefGoogle Scholar
  17. 17.
    Chandy, K.M., Misra, J.: How processes learn. Proc. 4th ACM ann. Symp. Princ. Distr. Comp., Minaki, Ontario, Canada (August) 1985Google Scholar
  18. 18.
    Dijkstra, E.W., Feijen, W.H.J., van Gasteren, A.J.M.: Derivation of a termination detection algorithm for distributed computations. Inf. Proc. Letters 16, 217–219 (1983)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Dijkstra, E.W.: Hierarchical ordering of sequential processes. In: operating systems techniques. C.A.R. Hoare, R.H. Petrot (eds.), pp. 72–93. New York: Academic Press 1972Google Scholar
  20. 20.
    Francez, N., Rodeh, M., Sintzoff, N.: Distributed termination with interval assertions. Proc. Int. Coll. Formalization Progr. Concepts, Peniscola, Spain, April 1980. Lect. Notes Comp. Sci. 107, 280–291 (1981)CrossRefGoogle Scholar
  21. 21.
    Francez, N.: Distributed termination. ACM Trans. Progr. Lang. Syst. 2, 42–55 (1980)CrossRefGoogle Scholar
  22. 22.
    Garcia-Molina, H.: Elections in a distributed computing system. IEEE Trans. Comput. C31, 1, 48–59 (1982)CrossRefGoogle Scholar
  23. 23.
    Gouda, M.G.: Distributed state exploration for protocol validation. Rept. No. 185, Dept. Computer Science, Univ. Texas at Austin, Texas 1981Google Scholar
  24. 24.
    Hoare, C.A.R.: Communicating Sequential Processes. Commun. ACM 21, 666–677 (1978)CrossRefGoogle Scholar
  25. 25.
    Itai, A., Rodeh, M.: Symmetry breaking in distributive networks. Proc. 22nd Symp. Found. Comp. Science, pp. 169–174. Nashville, Tennessee, 1981Google Scholar
  26. 26.
    Johnson, R.E., Schneider, F.B.: Symmetry and similarity in distributed systems (extended abstract). Proc. 4th ACM Ann. Symp. Princ. Distr. Comp., Minaki, Ontario, Canada (August) 1985Google Scholar
  27. 27.
    Lehmann, D., Rabin, M.O.: On the advantages of free choice: a symmetric and fully distributed solution to the dining philosophers problem. Proc. 8th Ann. ACM Symp. Princ. Progr. Lang., pp. 133–138. Williamsburgh, Virginia 1981Google Scholar
  28. 28.
    Le Lann, G.: Distributed systems — towards a formal approach. In: Information Processing 77. B. Gilchrist (ed.), pp. 155–160. Amsterdam: North-Holland 1977Google Scholar
  29. 29.
    Merritt, M.: Elections in the presence of faults. Proc. 3rd Ann. ACM Symp. Princ. Distr. Comp., pp. 134–142. Vancouver, B.C., Canada 1984Google Scholar
  30. 30.
    Plotkin, G.: An operational semantics for CSP. In: Formal Description of Programming Concepts, D. Bjørner (ed.), IFIP TC-2 Working Conference, pp. 199–223. Garmisch-Partenkirchen, 1982 (North-Holland, 1983)CrossRefGoogle Scholar
  31. 31.
    Rana, S.R.: A Distributed solution of the distributed termination problem. Inf. Proc. Letters 17, 43–46 (1983)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Richier, J.L.: Distributed termination in CSP — symmetric solutions with minimal storage. Rept. No. 84-49, LITP, Univ. Paris 7, Paris 1984Google Scholar
  33. 33.
    Vitanyi, P.M.B.: Distributed elections in an archimedian ring of processors. Proc. 16th Ann. ACM Symp. Theory Comput. 542–547 (1984)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • L. Bougé
    • 1
    • 2
  1. 1.LiensParis Cedex 05France
  2. 2.The Laboratoire d'InformatiqueUniversité d'OrléansOrléans Cedex 02France

Personalised recommendations