Advertisement

Intensive Care Medicine

, Volume 14, Issue 5, pp 554–557 | Cite as

Albumin abuse in intensive care medicine

  • A. F. Grootendorst
  • M. G. M. van Wilgenburg
  • P. H. J. M. de Laat
  • B. van der Hoven
Original Articles

Abstract

Albumin is a much abused and expensive drug in intensive care units. One of the motivations for its use is the prevention of pulmonary edema by enhancing the colloid osmotic pressure (COP). Fear of pulmonary edema has led to the formulation of a magic (arbitrary) albumin value varying from one intensive care unit to another. Many intensive care units start substituting albumin when it is below 25 g/l. The objective of this paper is to look at the rationale of this policy. Our results show that in intensive care patients, with a variety of primary diagnoses, a poor correlation exists between COP and serum albumin concentration (r=0.56; p(0.001). To get an index of the colloid osmotic status of the I. C.-patient measuring albumin concentration is useless and COP should be measured instead. From 19 patients with a COP in the 15.0–20.0 mmHg range (corresponding albumin range: 12.0–25.0 g/l) and from 10 patients with a COP in the 11.6–15.0 mmHg range (corresponding albumin range 10.5–19.2 g/l) none developed pulmonary edema. It is questionable if expensive, scarce albumin is the drug of choice with which to increase COP, for the mean increase (±SD) in COP after infusion of 100 grams albumin is 2.2 (±1.5) mmHg (p(0.001). Adopting a COP action level of 15 mmHg can lead to considerable savings.

Key words

Albumin Colloid osmotic pressure Oncotic pressure Oncometer-pulmonary edema 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landis EM, Pappenheimer JR (1963) Exchanges of substances through the capillary walls. In: Dow P (ed) Handbook of physiological knowledge and concepts, Sect 2. Circulation, Vol 2. Williams and Wilkins, Baltimore, pp 961Google Scholar
  2. 2.
    Landis EM (1943) Capillary pressure and capillary permeability. Physiol Rev 14:404Google Scholar
  3. 3.
    Lundsgaard-Hansen P, Pappova E (1974) Respiratorische Insuffizienz, kolloid osmotischer Druck und Albumintherapie. Infusionstherapie 1:624Google Scholar
  4. 4.
    Weil MH, Henning RJ, Puri VK (1979) Colloid oncotic pressure. Crit Care Med 7:113Google Scholar
  5. 5.
    Barclay SA, Bennett D (1987) The direct measurement of plasma colloid osmotic pressure is superior to colloid osmotic pressure derived from albumin or total protein. Intensive Care Med 13:114Google Scholar
  6. 6.
    Sprung CL, Isikoff SK, Hauser M, Eisler BR (1980) Comparison of measured and calculated colloid osmotic pressure of serum and pulmonary edema fluid in patients with pulmonary edema. Crit Care Med 8:613Google Scholar
  7. 7.
    Schmidt RF, Thews G (1983) Human physiology, Springer Berlin Heidelberg New York, pp 419Google Scholar
  8. 8.
    Guyton AC (1981) Textbook of medical physiology, 6 edn. Saunders, Philadelphia, pp 376Google Scholar
  9. 9.
    Haupt MT, Rackow EC (1982) Colloid osmotic pressure and fluid resuscitation with hetastarch, albumin and saline solutions. Crit Care Med 10:159Google Scholar
  10. 10.
    Puri VK, Howard M, Paidipaty BB, Singh S (1983) Resuscitation in hypovolemia and shock: a prospective study of hydroxyethyl starch and albumin. Crit Care Med 11:518Google Scholar
  11. 11.
    Moggio RA, Rha CC, Somberg FD, Praeger PI, Pooley RW, Reed GE (1983) Hemodynamic comparison of albumin and hydroxyethyl starch in postoperative cardiac surgery patients. Crit Care Med 11:943Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. F. Grootendorst
    • 1
  • M. G. M. van Wilgenburg
    • 1
  • P. H. J. M. de Laat
    • 1
  • B. van der Hoven
    • 1
  1. 1.St. Clara HospitalRotterdamThe Netherlands

Personalised recommendations