Advertisement

Journal of Philosophical Logic

, Volume 19, Issue 4, pp 343–377 | Cite as

On an alleged refutation of Hilbert's Program using Gödel's First Incompleteness Theorem

  • Michael Detlefsen
Article

Keywords

Incompleteness Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, T.: 1990, ‘Derivability Conditions on Rosser's Provability Predicates’, to appear in the Notre Dame Journal of Formal Logic.Google Scholar
  2. Detlefsen, M.: 1986, Hilbert's Program, D. Reidel Publishing Co., Dordrecht.Google Scholar
  3. Feferman, S.: 1960, ‘The Arithmetization of Metamathematics in a General Setting’, Fundamenta Mathematicae 49, 35–92.Google Scholar
  4. Gentzen, G.: ‘The Consistency of Elementary Number Theory’, in M. E. Szabo (trans. and ed.), The Collected Works of Gerhard Gentzen, North-Holland Publishing Co., Amsterdam, 1969.Google Scholar
  5. Gentzen, G.: 1938, ‘The Present State of Research into the Foundations of Mathematics’, in M. E. Szabo (trans. and ed.), The Collected Works of Gerhard Gentzen, North-Holland Publishing Co., Amsterdam, 1969.Google Scholar
  6. Guaspari, D. and R.Solovay: 1979, ‘Rosser Sentences’, Annals of Mathematical Logic 16, 81–99.Google Scholar
  7. Hilbert, D.: 1901, ‘Mathematical Problems’, Bulletin of the American Mathematical Society 8, 437–479.Google Scholar
  8. Hilbert, D.: 1925, ‘On the Infinite’, in J. van Heijenoort (ed.), From Frege to Gödel, Harvard Univ. Press, Cambridge, 1967.Google Scholar
  9. Hilbert, D.: 1927, ‘The Foundations of Mathematics’, in J. van Heijenoort (ed.), From Frege to Gödel, Harvard Univ. Press, Cambridge, 1967.Google Scholar
  10. Hilbert, D.: 1930, Grundlagen der Geometrie, Teubner, Leipzig and Berlin, 7th. ed.Google Scholar
  11. Hilbert, D.: 1931, ‘Die Grundlegung der elementaren Zahlenlehre’, in Gesammelte Abhandlungen, vol. 3, Julius Springer-Verlag (dy1935), Berlin.Google Scholar
  12. Jeroslow, R.: 1975, ‘Experimental Logics and 377-1’, Journal of Philosophical Logic 4, 253–267.Google Scholar
  13. Kreisel, G.: 1971, ‘A Survey of Proof Theory II’, in J. E. Fenstad (ed.), Proceedings of the Second Scandinavian Logic Symposium, North-Holland Publishing Co., Amsterdam.Google Scholar
  14. Kreisel, G. and G.Takeuti: 1974, ‘Formally Self-Referential Propositions for Cut-Free Analysis and Related Systems’, Dissertationes Mathematicae 118, 4–50.Google Scholar
  15. Kreisel, G.: 1976, ‘What Have We Learnt from Hilbert's Second Problem?’, AMS Proceedings of Symposia in Pure Mathematics 28, American Mathematical Society, Providence.Google Scholar
  16. Kreisel, G.: 1980, ‘Kurt Gödel’, Biographical Memoirs of the Fellows of the Royal Society 26, 149–224.Google Scholar
  17. Prawitz, D.: 1981, ‘Philosophical Aspects of Proof Theory’, in Contemporary Philosophy: A New Survey, vol. 1, Martinus Nijhof Publishers, The Hague.Google Scholar
  18. Rosser, J. B.: 1936, ‘Extensions of Some Theorems of Gödel and Church’, Journal of Symbolic Logic 1, 87–91.Google Scholar
  19. Sieg, W.: 1985, ‘Fragments of Arithmetic’, Annals of Pure and Applied Logic 28, 33–71.Google Scholar
  20. Simpson, S.: 1988, ‘Partial Realizations of Hilbert's Program’, Journal of Symbolic Logic 53, 349–363.Google Scholar
  21. Smorynski, C.: 1977, ‘The Incompleteness Theorems’, in J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland Publishing Co., Amsterdam.Google Scholar
  22. Smorynski, C.: 1985, Self-Reference and Modal Logic, Springer-Verlag, New York.Google Scholar
  23. Smorynski, C.: 1988, ‘Hilbert's Programme’, CWI Quarterly 1, 3–59.Google Scholar
  24. Visser, A.: 1989, ‘Peano's Smart Children: A Provability Logical Study of Systems with Built-in Consistency’, Notre Dame Journal of Formal Logic 30, 161–196.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Michael Detlefsen
    • 1
  1. 1.Department of PhilosophyUniversity of Notre DameNotre DameU.S.A.

Personalised recommendations