Acta Informatica

, Volume 24, Issue 5, pp 565–582 | Cite as

Some techniques for geometric searching with implicit set representations

  • Bernard Chazelle


There are many efficient ways of searching a set when all its elements can be represented in memory. Often, however, the domain of the search is too large to have each element stored separately, and some implicit representation must be used. Whether it is still possible to search efficiently in these conditions is the underlying theme of this paper. We look at several occurrences of this problem in computational geometry and we propose various lines of attack. In the course of doing so, we improve the solutions of several specific problems; for example, computing order statistics, performing polygonal range searching, testing algebraic predicates, etc.


Information System Operating System Data Structure Communication Network Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer algorithms. Reading, MA, Addison-Wesley 1974zbMATHGoogle Scholar
  2. 2.
    Bentley, J.L., Shamos, M.I.: Divide-and-conquer in multidimensional space. Proc. 8th Ann. ACM Symp. Theory Comput. (1976), pp. 220–230Google Scholar
  3. 3.
    Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7, 448–161 (1972)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chazelle, B.: Filtering search: A new approach to query-answering. SIAM J. Comput. 15, 703–724 (1986)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chazelle, B.: Fast searching in a real algebraic manifold with applications to geometric complexity. Proc. CAAP'85, Berlin, LNCS, pp 145–156. Berlin, Heidelberg, New York: Springer Verlag 1985Google Scholar
  6. 6.
    Chazelle, B.: New techniques for computing order statistics in Euclidean space. Proc. ACM Symp. Comput. Geometry, pp. 125–134, 1985Google Scholar
  7. 7.
    Chazelle, B., Guibas, L.J.: Fractional cascading: II. Applications. Algorithmica 1, 163–191 (1986)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chazelle, B., Guibas, L.J., Lee, D.T.: The power of geometric duality. BIT 25, 76–90 (1985)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chin, F., Wang, C.A.: Minimum vertex distance between separable convex polygons. Inf. Proc. Lett. 18, 41–45 (1984)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cole, R.: Searching and storing similar lists. J. Algorithms 7, 202–220 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. Proc. of 25th Ann. IEEE Symp. Found. Comput. Sci., pp. 255–259. Singer Island 1984Google Scholar
  12. 12.
    Cole, R., Yap, C.K.: Geometric retrieval problems. Inf. Control 63, 39–57 (1984)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dobkin, D.P., Lipton, R.J.: Multidimensional searching problems. SIAM J. Comput. 5, 181–186 (1976)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Edelsbrunner, H., O'Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15, 341–363 (1986)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Edelsbrunner, H., Welzl, E.: Halfplanar range search in linear space and O(n 0.695) query time. Rep. F111, Inst. Inform. Proc., Techn. Univ. Graz, Austria 1983zbMATHGoogle Scholar
  16. 16.
    Frederickson, G.N., Johnson, D.B.: The complexity of selection and ranking in X+Y and matrices with sorted columns. J. Comput. Syst. Sci. 24, 197–208 (1982)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Frederickson, G.N., Johnson, D.B.: Finding k th paths and p-centers by generating and searching good data structures. J. Algorithms. 4, 61–80 (1983)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: sorted matrices. SIAM J. Comput 13, 14–30 (1984)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Galil, Z., Megiddo, N.: A fast selection algorithm and the problem of optimum distribution of effort. J. ACM 26, 58–64 (1979)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. Proc. 2nd Annu. ACM Symp. Comput. Geometry, pp. 61–71 (1986)Google Scholar
  21. 21.
    Johnson, D.B., Mizoguchi, T.: Selecting the k-th element in X + Y and X1+X2+...+Xm. SIAM J. Comput. 7, 147–153 (1978)MathSciNetCrossRefGoogle Scholar
  22. 22.
    McKenna, M., Toussaint, G.T.: Finding the minimum vertex distance between two disjoint convex polygons in linear time. Tech. Rep. SOCS-83-6, McGill University, 1983Google Scholar
  23. 23.
    Meggido, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM, 852–865 (1983), vol. 30MathSciNetCrossRefGoogle Scholar
  24. 24.
    Meggido, N., Tamir, A., Zemel, E., Chandrasekaran, R.: An O(n log2 n) algorithm for the k th longest path in a tree with applications to location problems. SIAM J. Comput. 10, 328–337 (1981)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mirzaian, A., Arjomandi, E.: Selection in X+Y and matrices with sorted rows and columns. Inf. Proc. Lett. 20, 13–17 (1985)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three dimensions. Commun. ACM 20, 87–93 (1977)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Preparata, F.P., Shamos, M.I.: Computational geometry. Berlin, Heidelberg, New York: Springer 1985CrossRefGoogle Scholar
  28. 28.
    Salowe, J.S.: Efficient geometric selection in the plane. M. Sc. Thesis, Rutgers University, 1985Google Scholar
  29. 29.
    Shamos, M.I.: Geometry and statistics: problems at the interface, in: Algorithms and complexity: new directions and recent results, J.F. Traub (ed.), pp. 251–280. New York: Academic Press 1976Google Scholar
  30. 30.
    Tarski, A.: A decision method for elementary algebra and geometry. Univ. of Calif. Press, 1948, 2nd Ed., 1951Google Scholar
  31. 31.
    Toussaint, G.T.: An optimal algorithm for computing the minimum vertex distance between two crossing convex polygons. Proc. 21st Allerton Conf. Comm. Control Comput., pp 457–458 (1983)Google Scholar
  32. 32.
    Willard, D.E.: Polygon retrieval. SIAM J. Comput 11, 149–165 (1982)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yao, A.C.: On constructing minimum spanning tree in k-dimensional space and related problems. SIAM J. Comput. 11, 721–736 (1982)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yao, A.C., Yao, F.F.: A general approach to d-dimensional geometric queries, 17th Ann. ACM Symp. Theory Comput., pp. 163–168. Providence, RI, 1985Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Bernard Chazelle
    • 1
  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations