Advertisement

Acta Informatica

, Volume 18, Issue 3, pp 299–318 | Cite as

On the complexity of some problems concerning the use of procedures. I.

  • Karl Winklmann
Article

Summary

We consider programming languages which allow procedures to be declared dynamically and to be passed as parameters. The influence of these two features on the decidability of “formal parameter correctness,” “formal recursivity,” and other properties relevant for debugging and optimization has been studied in [5–12]. In this paper we study the feasibility of such decision procedures in those cases where decidability has been proven. Thus this paper presents a complexity-theoretic refinement of some of the recursion-theoretic work from [5–12]. It is divided into two parts.

The main results in part I are:
  1. 1)

    Detecting the presence of “formally recursive” procedures in a program is an NP-complete problem (Theorem 1).

     
  2. 2)

    Deciding whether or not a program has the “formal most-recentproperty” is a P-space-complete problem (Theorem 2).

     

In part II [15] we will analyze the complexity of such problems in restricted classes of programs.

Keywords

Information System Operating System Data Structure Communication Network Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison- Wesley, 1974Google Scholar
  2. 2.
    Cook, S.A.: The complexity of theorem-proving procedures. Proc. 3rd Annual ACM Symposium on Theory of Computing. 151–158, 1971Google Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and Intractibility. A Guide to the Theory of NP- completeness. San Francisco, 1979Google Scholar
  4. 4.
    Greibach, S.A.: Theory of Program Structures: Schemes, Semantics, Verification. (Lecture Notes in Computer Science, vol. 14), 1975Google Scholar
  5. 5.
    Kandzia, P.: On the most-recent-property of ALGOL-like programs. Automata, Languages, and Programming — 2nd Colloquium. Loeckx, J. (ed.) (Lecture Notes in Computer Science, vol. 14), 1974Google Scholar
  6. 6.
    Kaufholz, G., Lippe, W.: A note on a paper of H. Langmaack about procedure parameter transmission. Bericht A74/06. Universität des Saarlandes, Saarbrücken, 1974Google Scholar
  7. 7.
    Langmaack, H.: On correct procedure parameter transmission in higher programming languages. Acta Informat. 2, 110–142 (1973)Google Scholar
  8. 8.
    Langmaack, H.: On procedures as open subroutines. I. Acta Informat. 2, 311–333 (1973)Google Scholar
  9. 9.
    Langmaack, H.: On procedures as open subroutines. II. Acta Informat. 3, 227–241 (1974)Google Scholar
  10. 10.
    Langmaack, H., Lippe, W.M., Wagner, F.: The formal termination problem for programs with finite ALGOL-60 modes. Informat. Proc. Lett. 9, 155–159 (1979)Google Scholar
  11. 11.
    Lippe, W.: Entscheidbarkeitsprobleme bei der Übersetzung von Programmen mit einparametrigen Prozeduren. 3. Fachtagung über Programmiersprachen. Schlender, B., Frielinghaus, W. (eds.) (Lecture Notes in Computer Science, vol. 7). Berlin-Heidelberg-New York: Springer, 1974Google Scholar
  12. 12.
    Lippe, W.: Über die Entscheidbarkeit der formalen Erreichbarkeit von Prozeduren bei monadischen Programmen. Doctoral Dissertation. Universität des Saarlandes, Saarbrücken, 1975Google Scholar
  13. 13.
    Naur, P. (ed.): Revised report on the algorithmic language ALGOL60. Numer. Math. 4, 420–453 (1963)Google Scholar
  14. 14.
    Savitch, W.J.: Relationships between deterministic and nondeterministic tape complexities. J. Comput. Syst. Sci. 4, 177–192 (1970)Google Scholar
  15. 15.
    Winklmann, K.: On the complexity of some problems concerning the use of procedures. II. Acta Informat. “To appear”Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Karl Winklmann
    • 1
  1. 1.Computer Science DepartmentWashington State UniversityPullmanUSA

Personalised recommendations