Acta Informatica

, Volume 17, Issue 1, pp 69–87 | Cite as

Vompleteness of E0L forms is decidable

  • G. Rozenberg
  • R. Verraedt
Article

Summary

It is proved that given an E0L form F it is decidable whether or not F is vomplete. The concept of n-completeness, n a positive integer, is introduced and it is shown that for an E0L form F and an integer n≧2 vompleteness is equivalent with n-completeness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainhirn, W.: How to get rid of pseudoterminals. In: Automata, languages and programming (J. de Bakker, J. van Leeuwen, eds.), Lecture Notes in Computer Science, Vol. 85, pp. 1–18. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  2. 2.
    Ainhirn, W.: Marvellous interpretations differ little but decisively from ordinary interpretations of E0L forms. Technological University Graz, ReportGoogle Scholar
  3. 3.
    Ainhirn, W., Maurer, H.: On ɛ-productions for terminals in E0L forms. Discrete Applied Math. 1, 155–166 (1979)Google Scholar
  4. 4.
    Culick II, K., Maurer, H., Ottmann, T.: On two-symbol complete E0L forms. Theoretical Computer Science 6, 69–92 (1978)Google Scholar
  5. 5.
    Ehrenfeucht, A., Rozenberg, G., Verraedt, R.: Basic formulas and languages, Part I. The theory. Discrete Applied Math. 3, 235–255 (1981)Google Scholar
  6. 6.
    Ehrenfeucht, A., Rozenberg, G., Verraedt, R.: Basic formulas and languages, Part II. Applications to E0L systems and forms. Discrete Applied Math. 4, 11–22 (1982)Google Scholar
  7. 7.
    Maurer, H., Ottmann, T., Salomaa, A.: On the form equivalence of L forms. Theor. Comput. Sci. 4, 199–225 (1977)Google Scholar
  8. 8.
    Maurer, H., Salomaa, A., Wood, D.: E0L forms. Acta Informat. 8, 75–96 (1977)Google Scholar
  9. 9.
    Maurer, H., Salomaa, A., Wood, D.: Uniform interpretations of L forms. Information and Control 36, 157–173 (1978)Google Scholar
  10. 10.
    Maurer, H., Salomaa, A., Wood, D.: On good E0L forms. SIAM J. Comput. 7, 158–166 (1978)Google Scholar
  11. 11.
    Maurer, H., Salomaa, A., Wood, D.: Relative goodness of E0L forms. RAIRO Inform, th. 4, 219–230 (1978)Google Scholar
  12. 12.
    Rozenberg, G., Verraedt, R.: On pure, terminal invariant and nonterminal invariant interpretations of E0L forms. Theor. Comput. Sci. 14, 267–288 (1981)Google Scholar
  13. 13.
    Rozenberg, G., Verraedt, R.: On fixed, terminal fixed and nonterminal fixed interpretations of E0L forms. Information and Control 48, 119–146 (1981)Google Scholar
  14. 14.
    Rozenberg, G., Salomaa, A.: The mathematical theory of L systems. New York: Academic Press 1980Google Scholar
  15. 15.
    Wood, D.: Grammar and L forms: An Introduction. New York: Springer 1980Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. Rozenberg
    • 1
  • R. Verraedt
    • 2
  1. 1.Institute of Applied Mathematics and Computer ScienceUniversity of LeidenRA LeidenThe Netherlands
  2. 2.Department of MathematicsUniversity of Antwerp, U.I.A.WilrijkBelgium

Personalised recommendations