Advertisement

Archives of Microbiology

, Volume 163, Issue 1, pp 1–6 | Cite as

Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum centenum

  • Lisa Ragatz
  • Ze-Yu Jiang
  • Carl E. BauerEmail author
  • Howard Gest
Original Paper

Abstract

Most photosynthetic microorganisms have the capability of photosensing light quality and intensity. Movement of motile photosynthetic microorganisms to locales that offer optimal physical and chemical conditions for light-dependent growth provides obvious selective advantages. Among phototrophs, many cyanobacteria and algae migrate towards or away from the direction of light, a process termed phototaxis. In contrast, anoxygenic photosynthetic bacteria are believed to respond to changes in light intensity in a manner that is not related to the direction of light, a process that is often described by the term “photophobic”. We recently reported that “swarm colonies” of the purple photosynthetic bacterium Rhodospirillum centenum are capable of macroscopically visible phototactic behavior. In the present study we further characterize the phototactic behavior of R. centenum swarm colonies and provide an action spectrum that delineates regions of the spectrum that elicit positive and negative phototaxis.

Key words

Rhodospirillum centenum Phototaxis Swarm colonies Action spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti L, Harshey BM (1990) Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J Bacteriol 172: 4322–4328Google Scholar
  2. Allen R, Bauman P (1971) Structure and arrangements of flagella in species of the genus Beneckea and Photobacterium fischeri. J Bacteriol 107:295–302Google Scholar
  3. Armitage JP (1991) Photoresponses in Eubacteria. In: Lenci F, Ghetti F, Colombetti G, Häder D-P, Song P-S (eds) Biophysics of photoreceptors and photomovements in microorganisms. Plenum Press, New York London, pp 43–52Google Scholar
  4. Armitage JP, Evans MCW (1981) The reaction centre in the phototactic and chemotactic response of photosynthetic bacteria. FEMS Microbiol Lett 11:89–92Google Scholar
  5. Armitage JP, Ingham C, Evans MCW (1985) Role of proton motive force in phototactic and aerotactic responses of Rhodopseudomonas sphaeroides. J Bacteriol 161:967–972Google Scholar
  6. Buder J (1917) Zur Kenntnis der phototaktischen Richtungsbewegungen. Jahrbüch wissen. Botanik 58:105–220Google Scholar
  7. Engelmann TW (1883) Bacterium photometricum. Ein Beitrag zur vergleichenden Physiologie des Licht-und Farbensinnes. Arch Gesam Physiol Mensch Tiere 30:95–124Google Scholar
  8. Favinger J, Stadtwald R, Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie Van Leeuwenhoek 55:291–296Google Scholar
  9. Häder D-P (1987) Photosensory behavior in procaryotes. Microbiol Rev 51:1–21Google Scholar
  10. Häder D-P (1991) Phototaxis and gravitaxis in Euglena gracilis. In: Lenci F, Ghetti F, Colombetti G, Häder D-P, Song P-S (eds) Biophysics of photoreceptors and photomovements in microorganisms. Plenum Press, New York London, pp 203–222Google Scholar
  11. Harayama S, Iino T (1977) Phototaxis and membrane potential in the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 131:34–41Google Scholar
  12. Hegeman P (1991) Photoreception in Chlamydomonas. In: Lenci F, Ghetti F, Colombetti G, Häder D-P, Song P-S (eds) Biophysics of photoreceptors and photomovements in microorganisms. Plenum Press, New York London, pp 223–230Google Scholar
  13. Henrichsen J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Revs 36:478–503Google Scholar
  14. Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms, John Wiley, New York, pp 39–111Google Scholar
  15. McCarter L, Hilmen M, Silverman N (1988) Flagellar dynameter controls swarmer cell differentiation of V. parahaemolyticus. Cell 54:345–351Google Scholar
  16. Noguchi T, Hayashi H, Tasumi M (1990) Factors controlling the efficiency of energy transfer fromcarotenoids to bacteriochlorophyll in purple photosynthetic bacteria. Biochim Biophys Acta 1017:280–290Google Scholar
  17. Nultsch W (1991) Survey of photomotile responses in microorganisms. In: Lenci F, Ghetti F, Colombetti G Häder D-P, Song P-S (eds) Biophysics of photoreceptors and photomovements in microorganisms. Plenum Press, New York London pp 1–5Google Scholar
  18. Ragatz L, Jiang Z-Y, Bauer C, Gest H (1994) Phototactic purple bacteria. Nature 370:104Google Scholar
  19. Smith H (1982) Light quality, photoperception, and plant strategy. Ann Rev Plant Physiol 33:481–518Google Scholar
  20. Stadtwald-Demchick R, Turner FR, Gest H (1990) Physiological properties of the thermotolerant photosynthetic bacterium, Rhodospirillum centenum. FEMS Microbiol Lett 67:139–144Google Scholar
  21. Yildiz FH, Gest H, Bauer CE (1991a) Genetic analysis of photosynthesis in Rhodospirillum centenum. J Bacteriol 173:4163–4170Google Scholar
  22. Yildiz FH, Gest H, Bauer CE (1991b) Attenuated effect of oxygen on photopigment synthesis in Rhodospirillum centenum. J Bacteriol 173:5502–5506Google Scholar
  23. Yildiz FH, Gest H, Bauer CE (1992) Conservation of the photosynthesis gene cluster in Rhodospirillum centenum. Mol Microbiol 6:2683–2691Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Lisa Ragatz
    • 1
  • Ze-Yu Jiang
    • 1
  • Carl E. Bauer
    • 1
    Email author
  • Howard Gest
    • 1
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations